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CHAPTER 1

Morse theory
In this first lecture we will give a rapid overview of Morse theory from a ’modern’ view-
point. For simplicity here we stick to Morse functions on finite dimensional closed man-
ifolds, but with appropriate modifications a lot of what follows works in either the non-
compact or infinite dimensional setting. A key textbook reference for Morse theory is
the book of Schwarz [Sch93]. In this section there are essentially no proofs. Most of this
course will be concerned with establishing similar theorems in the Floer setup. These will
be proved in full. Warning: If this material is not at least vaguely familiar then you are
probably better off dropping the course now! It is only going to get harder...

In a lot of what follows we will talk about Banach manifolds and Banach bundles over
them. These are not as scary as they seem! A Banach manifold B is defined in exactly
the same way as a normal manifold B is, the only difference is that B should locally look
like some fixed Banach space X rather than a fixed Euclidean space Rn. Since Rn is itself
a Banach space, normal manifolds are of course a special case of Banach manifolds. The
key difference between Banach manifolds and normal manifolds is that the latter may be
infinite dimensional.

Exercise 1.1. Look up how much of the differential geometry you know and love still
applies for Banach manifolds. Feel both reassured and scared at the same time.

Similarly a Banach bundle π : E → B over a Banach manifold is defined in exactly the
same way as a vector bundle π : E → B over a normal manifold, the only difference being
that each fibre Ex := π−1(x) should look like a Banach space X rather than a vector space
V .

Definition 1.2. Let π : E → B denote a Banach bundle and σ ∈ Γ(B, E) a smooth section.
Denote by

Mσ := {x ∈ B | σ(x) = 0x ∈ Ex} .

If x ∈ Mσ then the vertical derivative Dvσ(x) is a map

Dvσ(x) : TxB → Ex

defined as follows. Firstly, the normal differential Dσ(x) is a map Dσ(x) : TxB → Tσ(x)E =
T0xE . Next, if o ∈ Γ(B, E) denotes the zero section then one can write

T0xE = T0x(o(B))⊕ T0xEx ∼= TxB ⊕ Ex.

The vertical derivative is then the composition of Dσ(x) and the projection proj : T0xE →
Ex.

Definition 1.3. Suppose x ∈ Mσ. We call x a regular zero if the vertical derivative
Dvσ(x) : TxB → Ex is a surjective linear map between the Banach spaces TxB and Ex.
This is equivalent to asking that

Dvσ(x)[TxB]⊕Do(x)[TxB] = T0xE ,

i.e., that σ is transverse to the zero section o at x.

In finite dimensions, one has:
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Theorem 1.4 (Finite dimensional implicit function theorem). Suppose π : En+k → Bn

is a vector bundle of rank k, and σ ∈ Γ(B,E) is a section. Assume that the vertical
derivative Dvσ(x) is regular at every point x ∈Mσ := σ−1(0). Then Mσ is a submanifold
of B of dimension n− k.

In the infinite dimensional case a similar result is true. In order to state the result
precisely, let us recall the definition of a Fredholm map.

Definition 1.5. Suppose T ∈ L(X,Y ) is a bounded linear map between two Banach
spaces X and Y . Then ker T and cokerT := Y/ranT are linear subspaces of X and Y
respectively. We say that T is a Fredholm operator if both ker T and cokerT are finite
dimensional, and if this is the case we define the Fredholm index of T to be the integer

indT := dim ker T − dim cokerT.

Theorem 1.6 (Infinite dimensional implicit function theorem). Suppose π : E → B is a
Banach bundle and σ ∈ Γ(B, E). Assume that the vertical derivative Dvσ(x) is Fredholm,
and in addition is surjective and admits a right inverse for every x ∈ Mσ := σ−1(0).
Then Mσ admits the structure of a submanifold of B of (finite) dimension equal to the
Fredholm index of Dvσ(x).

Exercise 1.7. Check that the finite dimensional implicit function theorem is a corollary
of the infinite dimensional implicit function theorem.

Definition 1.8. In general, a space M is said to have virtual dimension k ∈ Z, written

virdimM = k,

if M can be seen as the set of zeros of a smooth section of a Banach bundle over a Banach
manifold, whose vertical derivative is Fredholm and of index k. When such a section
is transverse to the zero section (and hence every zero is regular), Theorem 1.6 implies
that either M is empty, or k ≥ 0 and M admits the structure of a smooth manifold of
dimension k.

Remark 1.9. Typical proofs in Floer theory go along the following lines: suppose we want
to prove that ’bad property X’ can never happen. We first show that the space of states
where X happens has virtual dimension k < 0. Then we show that the section defining
this space can be made transverse. This implies that X can never happen.

We will now give two applications to this material, both related to Morse theory. The
first is finite dimensional, whereas the second will be infinite dimensional.

Definition 1.10. Let B denote a smooth (finite dimensional) closed manifold and fix
f ∈ C∞(B). Then df ∈ Γ(B, T ∗B), and in this case

Mdf = crit(f) = {x ∈ B | dfx = 0} .

One says that x ∈ crit(f) is a non-degenerate critical point if x is a regular zero of the
vertical derivative Dv(df)(x). One says that f is a Morse function if every critical point
of f is non-degenerate.

Exercise 1.11. Suppose (x1, . . . , xn) are local coordinates at x. Identify Dv(df)(x) with
the Hessian matrix [

∂2f

∂xi∂xj

∣∣
x

]
i,j

.

Conclude that this is the same definition of Morse function that you’ve known since you
were five.
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Now fix a Riemannian metric g on B. We denote by ∇f or ∇gf the gradient of f with
respect to g, which is the unique vector field ∇f ∈ Γ(B, TB) such that

g(∇f(x), ξ) = df(x)[ξ], for all x ∈ B, ξ ∈ TxB.

We denote by
expx : Dx ⊂ TxB → Ux ⊂ B

the exponential map (with respect to some Riemannian metric, not necessarily equal to
g) on B. Now fix two distinct critical points x, y of f . Let B(x, y) denote the set of maps
u ∈W 1,2(R, B) that satisfy

lim
s→−∞

u(s) = x, lim
s→+∞

u(s) = y,

and such that there exists s0 > 0 and ζ ∈W 1,2((−∞,−s0], Dx) and ξ ∈W 1,2([s0,+∞), Dy)
such that

u(s) = expx(ζ(s)), for all s ∈ (−∞,−s0],

u(s) = expx(ξ(s)), for all s ∈ [s0,+∞).

Theorem 1.12. The space B(x, y) can be given the structure of a Banach manifold.
Moreover if u ∈ B(x, y) then TuB(x, y) can be identified with the space of sections ξ ∈
W 1,2(R, u∗TB).

Exercise 1.13. Look in Appendix A of Schwarz’s book [Sch93] and study the proof of
Theorem 1.12 in depth. Suppress the desire to kill yourself.

We now define a Banach bundle π : E → B(x, y) by setting

Eu := L2(R, u∗TB), u ∈ B(x, y).

As with Theorem 1.12, the proof that E really is a Banach bundle can be found in Schwarz’
book [Sch93].

Definition 1.14. Fix x, y ∈ crit(f). Define a section σ = σg ∈ Γ(B(x, y), E) by setting

σ(u) := ∂su+∇gf(u).

We will prove the Floer-theoretic version of the next theorem in great detail later on
in the course.

Theorem 1.15 (Properties of σ ).

1. The section σ is smooth.

2. If u ∈ M(x, y) := σ−1(0) then u is a smooth map.

3. The section σ is Fredholm.

The proof of (1) is somewhat tedious. The proof of (2) is very straightforward, and
proceeds by induction. Suppose u ∈ W 1,2 satisfies σ(u) = 0. Now u ∈ W 1,2 implies that
∇f(u) ∈ W 1,2, and hence ∂su = −∇f(u) also belongs to W 1,2. But this implies that
u ∈W 2,2. Iterating this argument, we see u ∈W k,2 for each k ∈ Z, and hence u ∈ C∞ by
the Sobolev embedding theorem. This process (which is far less trivial in the Floer case)
is known as elliptic regularity.
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Definition 1.16. If x ∈ crit(f) is a non-degenerate critical point then we denote by
indf (x) the number (counted with multiplicity) of strictly negative eigenvalues ofDv(df)(x),
and call indf (x) the Morse index of f at x.

Theorem 1.17. The Fredholm index of σ is given by

indσ = indf (x)− indf (y).

It follows from Theorem 1.15, Theorem 1.17, and Theorem 1.6 that if Dvσ(u) was
surjective and admitted a right inverse for each u ∈ M(x, y) then M(x, y) would carry
the structure of a smooth manifold of (finite) dimension indf (x)− indf (y). Unfortunately
this is in general not true. Nevertheless, the next best thing is true.

Theorem 1.18. Let Met(B) denote the (Frechet) manifold of all Riemannian metrics on
B. There exists a subset Rf ⊂ Met(B) of second category such that if g ∈ Rf then for any
two critical points x, y ∈ crit f and any u ∈ M(x, y), the operator Dvσ(u) is surjective
and admits a right inverse.

In particular, if we start with some given metric g0 on B and fix ε > 0 then there
exists g ∈ Rf such that

∥∥g − g0
∥∥
C∞ < ε. We say that g is a Morse-Smale metric for f if

g ∈ Rf , and we say a pair (f, g) ∈ C∞(B)×Met(B) is a Morse-Smale pair if f is a Morse
function and g is a Morse-Smale metric for f .

From now on we will always assume that (f, g) is a Morse-Smale pair. Thus the
moduli spaces M(x, y) are always manifolds. We now wish to investigate the compactness
properties of these spaces. First note that if x ̸= y then M(x, y) is never compact.
Indeed, it always admits a free R-action via translation: explicitly if u ∈ M(x, y) and
s0 ∈ R, then the curve s 7→ u(s+ s0) also belongs to M(x, y). Thus we see that if x ̸= y
and M(x, y) ̸= ∅ then it is always at least 1-dimensional. Hence if indf (x) = indf (y) with
x ̸= y then M(x, y) = ∅.

Definition 1.19. We denote by M(x, y) := M(x, y)/R. Given u ∈ M(x, y) we denote
by u ∈ M(x, y) the equivalence class. Thus

dim M(x, y) = indf (x)− indf (y)− 1.

Suppose that indf (x) = indf (y) + 1, so that M(x, y) is a zero-dimensional space. If
the space M(x, y) was compact, it would be a finite set, and hence we could ’count’ it.
Luckily, this is indeed the case:

Theorem 1.20 (Baby compactness). If indf (x) = indf (y) + 1 then the space M(x, y) is
compact, and hence a finite set.

Definition 1.21. Given x, y ∈ crit f with indf (x) = indf (y) + 1, we define the number
n(x, y) ∈ Z2 to be the parity of the finite set M(x, y):

n(x, y) := #2M(x, y).

Remark 1.22. In this course we will only ever work with Z2-coefficients.
We can now define the Morse complex. Set

critk(f) := {x ∈ crit(f) | indf (x) = k} .
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Definition 1.23. Let
CMk(f) :=

⊕
x∈critk(f)

Z2 ⟨x⟩ ,

and define
∂ = ∂g : CMk(f) → CMk−1(f)

by requiring that
∂ ⟨x⟩ :=

∑
y∈critk−1(f)

n(x, y) ⟨y⟩ ,

and then extending by linearity.

We would like to prove that ∂ ◦ ∂ = 0. This is not remotely obvious, and to do so will
require a more sophisticated compactness result than the one in Theorem 1.20.

Definition 1.24. A sequence (uk)k∈N ⊂ M(x, y) is said to converge up to breaking if
there exist

1. critical points x = x0, x1, . . . , xm = y of f ,

2. flow lines uj ∈ M(xj−1, xj) for 1 ≤ j ≤ m,

3. sequences (sjk)k∈N for 1 ≤ j ≤ m with sj−1
k < sjk and with sjk − sj−1

k → +∞ for each
k ∈ N and each 1 ≤ j ≤ m,

with the following property: For any compact interval I ⊂ R, after passing to a subse-
quence, the sequence uk(·+ sjk) converges with all derivatives to uj(·). In this case we say
that (uk) converges to the broken gradient flow line (u1, . . . , um) and we write

uk ⇝ (u1, . . . , um).

Definition 1.25. A sequence (uk) ⊂ M(x, y) converges to the broken gradient flow line
(u1, . . . , um), written

uk ⇝ (u1, . . . , um),

if there exist representatives uk ∈ uk and uj ∈ uj such that uk ⇝ (u1, . . . , um).

Note that if there exists a sequence (uk) ⊂ M(x, y) that converges to a broken flow line
(u1, . . . , um) then necessarily indf (x)−indf (y) ≥ m+1. Indeed, one has uj ∈ M(xj−1, xj)
for some critical points x = x0, . . . , xm = y, and then indf (x

j−1)− indf (x
j) ≥ 1 for each

1 ≤ j ≤ m.

Theorem 1.26 (Compactness). Suppose x, y are critical points of f which satisfy

indf (x) = indf (y) +m+ 1

for some m ≥ 0. Then M(x, y) is compact up to m-fold breaking in the following sense:
suppose (uk) ⊂ M(x, y) has no convergent subsequence. Then there exists a broken
gradient trajectory (u1, . . . , ul) for some l ≤ m such that after passing to a subsequence,
uk ⇝ (u1, . . . , ul). In particular, if m = 0 then every sequence in M(x, y) has a convergent
subsequence.

We next state the ’converse’ of Theorem 1.26.
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Theorem 1.27 (Gluing). Suppose x, y are critical points of f which satisfy

indf (x) = indf (y) +m+ 1

for some m ≥ 1. Then if 1 ≤ l ≤ m and x = x0, x1, . . . , xl = y are critical points of f
such that indf (x

j−1)− indf (x
j) ≥ 1 for each j, and uj ∈ M(xj−1, xj) are given flow lines,

then there exists a sequence (uk) ⊂ M(x, y) such that uk converges to the broken flow
line (u1, . . . , ul).

Let us explicitly look at the case where m = 1, so that indf (x) − indf (y) = 2. Let
M(x, y) denote the compactification of M(x, y) obtained by adding in all possible limits
to sequences (uk) ⊂ M(x, y). Then M(x, y) is a compact 1-dimensional manifold. It
follows from Theorems 1.26 and 1.27 that:

Theorem 1.28. Suppose x, y are critical points of f which satisfy

indf (x) = indf (y) + 2

The boundary ∂M(x, y) of the 1-dimensional manifold M(x, y) can be identified as:

∂M(x, y) =
∪

indf (z)=indf (x)−1

M(x, z)×M(z, y).

Corollary 1.29. Suppose x, y are critical points of f which satisfy

indf (x) = indf (y) + 2.

Then ∑
indf (z)=indf (x)−1

n(x, z) · n(z, y) = 0 modulo 2.

Proof. A compact 1-dimensional manifold with boundary has an even number or boundary
points.

Exercise 1.30. Prove this!

Corollary 1.31. ∂2 = 0.

Proof. This is immediate from Corollary 1.29. Indeed, if x ∈ critk(f) then since ∂ is
linear,

∂(∂ ⟨x⟩) = ∂

 ∑
z∈critk−1(f)

n(x, z) ⟨z⟩


=

∑
z∈critk−1(f)

n(x, z)∂ ⟨z⟩

=
∑

z∈critk−1(f)

n(x, z)

 ∑
y∈critk−2(f)

n(z, y) ⟨y⟩


=

∑
y∈critk−2(f)

 ∑
z∈critk−1(f)

n(x, z) · n(z, y)


︸ ︷︷ ︸

⟨y⟩ .

=0 modulo 2
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Let us now discuss independence. Suppose (f±, g±) are two Morse-Smale pairs.
Choose a homotopy (fs, gs)s∈R such that

(fs, gs) =

{
(f−, g−), s ≤ −T,
(f+, g+), s ≥ T,

for some T > 0.
Definition 1.32. Fix x± ∈ crit(f±) and define the moduli space N (x−, x+) to consists
of all maps u ∈ B(x−, x+) such that

∂su+∇gsfs(u) = 0.

Thus N (x−, x+) is the zero-set of the s-dependent section σ(u) := ∂su+∇gsfs(u). As
before, we say that the homotopy (fs, gs) is regular if the vertical derivative Dvσ(u) is
surjective and admits a right inverse. As in Theorem 1.18, one can show that a generic
homotopy is regular. The Fredholm index of σ is again given by indf−(x−)− indf+(x+).
Note however that this time there is no R -action on N (x−, x+). Indeed, if u ∈ N (x−, x+)
and s0 ∈ R then typically s 7→ u(s + s0) does not belong to N (x−, x+). It is therefore
reasonable to hope that when indf−(x−) = indf+(x+), the space N (x,−, x+) is compact,
and thus finite. Luckily this is true:
Theorem 1.33. Suppose indf−(x−) = indf+(x+). Then the space N (x−, x+) is compact.

As with Theorem 1.20, this is a consequence of a more general compactness theorem.
The upshot is that we can define

n+−(x
−, x+) := #2N (x−, x+),

and then define a map
Φ+
− : CMk(f

−) → CMk(f
+) (1.1)

by setting
Φ+
−
⟨
x−
⟩
:=

∑
x+∈critk(f+)

n+−(x
−, x+)

⟨
x+
⟩
, (1.2)

and then extending by linearity. The next step is to show that Φ+
− is a chain map: that

is,
∂+ ◦ Φ+

− = Φ+
− ◦ ∂−, (1.3)

where ∂± denotes the boundary operator on CM∗(f
±). This would imply that Φ+

− descends
to define a map

ϕ+− : HM∗(f
−, g−) → HM∗(f

+, g+). (1.4)
As in the proof of Corollary 1.31, in order to prove (1.3) we need to analyze the boundary
of the compactification N (x−, x+) of N (x−, x+) when indf−(x−) = indf+(x+) + 1. This
time we have the following analogue of Theorem 1.28.
Theorem 1.34. Suppose x− ∈ critk(f−) and x+ ∈ critk−1(f

+). The boundary ∂N (x−, x+)
of the 1-dimensional manifold N (x−, x+) can be identified as:

∂N (x−, x+) =

 ∪
y−∈critk−1(f−)

M−(x−, y−)×N (y−, x+)


∪

 ∪
y+∈critk(f+)

N (x−, y+)×M+(y+, x+)

 ,

where M± denotes the moduli space with respect to (f±, g±).
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Exercise 1.35. Prove (1.3) using Theorem 1.34.

Next, we have the following functoriality result:

Theorem 1.36 (Functoriality in Morse theory). Suppose (f−, g−), (f0, g0) and (f+, g+)
are three Morse-Smale pairs, which give rise to three maps

ϕ0− : HM∗(f
−, g−) → HM∗(f

0, g0),

ϕ+0 : HM∗(f
0, g0) → HM∗(f

+, g+),

ϕ+− : HM∗(f
−, g−) → HM∗(f

+, g+).

Then one has
ϕ+− = ϕ+0 ◦ ϕ0−.

Corollary 1.37. The map ϕ+− : HM∗(f
−, g−) → HM∗(f

+, g+) is an isomorphism with
inverse ϕ−+ : HM∗(f

+, g+) → HM∗(f
−, g−). Thus the Morse homology HM∗(f, g) is inde-

pendent of the Morse-Smale pair (f, g).

Exercise 1.38. Prove Corollary 1.37.

Corollary 1.37 implies that the following definition makes sense.

Definition 1.39. We define the Morse homology HM∗(B) of a closed manifold B to be
the Morse homology HM∗(f, g) for some (and hence any) Morse-Smale pair (f, g) on B.

In fact, the Morse homology is the same as the singular homology.

Theorem 1.40 (The Morse homology theorem). There is a canonical isomorphism

HM∗(B) ∼= H∗(B;Z2).

There are many ways to prove Theorem 1.40. One way is show that a Morse-Smale
pair induces a cellular filtration of the manifold B. Nevertheless, this argument is of a
somewhat different flavour, and hence we will not discuss it in the course.

Exercise 1.41. Read and study the excellent set [AM06] of lecture notes, focusing in
particular on the proof of the Morse homology theorem.

We now discuss an extension of the theory presented above to the Morse-Bott setting.
In the setup we present here, this theory is due to Frauenfelder [Fra04, Appendix A]. As
with the previous section, we will not prove the assertions we make here (in this course we
will only prove Floer-theoretic results!). However, proofs of all the assertions made can
be found in [Fra04, Appendix A]. An alternative approach can be found in [BH13].

We begin by defining a Morse-Bott function. As before, we assume for simplicity that
B is a closed finite dimensional manifold.

Definition 1.42. Suppose f ∈ C∞(B). We say that f is a Morse-Bott function if crit(f)
is a closed submanifold of B (whose components may be of differing dimensions), which
moreover has the property that if x ∈ crit(f) and Cx ⊂ B denotes the connected compo-
nent of crit(f) containing x then

ker (Dv(df)(x) : TxB → T ∗
xB) = TxCx,

where Dv(df)(x) denotes the Hessian of f at x, as in Definition 1.10.
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Remark 1.43. Thus a Morse function is simply a Morse-Bott function with the additional
property that Cx = {x} for each x ∈ crit(f).

Compactness of B implies that if f is a Morse-Bott function on B then crit(f) has
finitely many components

crit(f) =
N⊔
j=1

Cj . (1.5)

In order to set up the Morse-Bott complex we start by picking a collection

hj : Cj → R

of Morse functions on each component Cj . It will sometimes be convenient to regard the
collection {hj} as a single Morse function

h : crit(f) → R;

this is harmless as the Cj are all pairwise disjoint. One should beware though that if we
think of h as a single function on crit(f), then h is defined on a space whose components
may be of differing dimensions.

Note that if x ∈ crit(f) the Morse index indf (x) still makes sense (it is still the number
of strictly negative eigenvalue of the linear map Dv(df)(x)). However if x ∈ crit(hj) then
we now have two different Morse indices: the index indf (x) of x as a critical point of f ,
and the index indhj

(x) of x as a critical point of hj . It turns out the correct thing to do
is to sum the two indices:

Definition 1.44. Given x ∈ crit(h) ⊂ crit(f), we define the Morse-Bott index of x,
written

indf,h(x) := indf (x) + indhj
(x),

where x ∈ Cj . We define

critk(f, h) := {x ∈ crit(h) | indf,h(x) = k} .

We can now define the Morse-Bott chain complex:

Definition 1.45. Given a Morse-Bott function f ∈ C∞(B), a Morse function h ∈
C∞(crit(f)), and k ≥ 0, we define the Morse-Bott chain complex by

CMBk(f, h) :=
⊕

x∈critk(f,h)

Z2 ⟨x⟩ .

In order to define the boundary operator ∂ : CMBk(f, h) → CMBk−1(f, h) we need to
introduce gradient flow lines with cascades. This is where things start to get messy...

Fix a Riemannian metric g on B, and fix Riemannian metrics ρj on Cj for j = 1, . . . , N .
As with h, it is convenient to regard the {ρj} as defining a single metric ρ on crit(f). We
will use g to define the gradient vector field ∇gf , and use ρ to define the gradient vector
field ∇ρh. In what follows given x ∈ crit(hj) we denote by W u(x;−∇ρh) the unstable
manifold of x with respect to the flow ϕs : Cj → Cj of −∇ρjhj :

W u(x;−∇ρh) :=

{
y ∈ Cj | lim

s→−∞
ϕs(y) = x

}
.

Similarly the stable manifold W s(x;−∇ρh) is the set

W s(x;−∇ρh) :=

{
y ∈ Cj | lim

s→+∞
ϕs(y) = x

}
.
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Definition 1.46. Fix 1 ≤ l,m ≤ N (where N was defined in (1.5)), and fix critical points
x ∈ crit(hl) and y ∈ crit(hm), and k ≥ 1. An element of Mc

k(x, y) is a tuple (2k−1)-tuple

(u = (u1, . . . , uk), t = (t1, . . . , tk−1)) ,

where uj ∈ C∞(R, B) and tj ≥ 0 are such that:

1. Each uj is a non-constant gradient flow line of f :

∂suj +∇gf(uj) = 0.

2. The first flow line u1 satisfies

lim
s→−∞

u1(s) ∈W u(x;−∇ρh),

and the last flow line uk satisfies

lim
s→+∞

uk(s) ∈W s(y;−∇ρh).

3. For 1 ≤ j ≤ k − 1 there are critical submanifolds Cij and gradient flow lines vj ∈
C∞(R, Cij ) of hij :

∂svj +∇ρij
hij (vj) = 0,

such that
lim

s→+∞
uj(s) = vj(0),

lim
s→−∞

uj+1(s) = vj(tj).

One should think of the vj as ’cascades’, as per the following picture: [insert picture].
The ’c’ in Mc stands for ’cascades’.

There is a free R-action on each flow line uj , and hence Mk(x, y) admits a free Rk-
action. As before we denote by Mc

k(x, y) the quotient space

Mc
k(x, y) := Mc

k(x, y)/R
k.

If l = m then we let M0(x, y) denote the set of normal gradient flow lines of h running
from x to y, and as usual Mc

0(x, y) is then the quotient space Mc
0(x, y)/R. If x and y do

not belong to the same component then we set M0(x, y) := ∅. Finally we set

Mc(x, y) :=

∞∪
k=0

Mc
k(x, y),

and

Mc(x, y) :=
∞∪
k=0

Mc
k(x, y)

In other words, the space Mc(x, y) is the space of gradient flow lines with arbitrarily many
cascades.
Remark 1.47. If l = m then Mc

k(x, y) = ∅ for all k ≥ 1, whereas if l ̸= m then Mc
0(x, y) =

∅.
We now have the following theorem, which is due to Frauenfelder [Fra04, Appendix

A]. This should be contrasted to Theorem 1.15, and is proved in essentially the same way.

11



Theorem 1.48. The space Mc(x, y) has virtual dimension indf,h(x)− indf,h(y)− 1.

This is complemented by the following result, which is proved in the same way as
Theorem 1.18. This result is again due to Frauenfelder.

Theorem 1.49. Suppose f ∈ C∞(B) is a Morse-Bott function, and h : crit(f) → R is a
Morse function, and ρ is a Riemannian metric on crit(f) such that (h, ρ) is a Morse-Smale
pair. Then there is a set Rf,h,ρ ⊂ Met(B) of second category with the property that if
g ∈ Rf,h,ρ then the moduli spaces Mc(x, y) are all cut out transversely, and hence are
manifolds.

Finally one has the following analogue of Theorem 1.20, which again is due to Frauen-
felder.

Theorem 1.50. Suppose indf,h(x) = indf,h(y)+ 1. Then the space Mc(x, y) is compact,
and hence a finite set.

This means that one can define numbers nc(x, y) for x, y ∈ crit(h) by

nc(x, y) := #2Mc(x, y).

Then as in Definition 1.23 one defines the boundary operator

∂ : CMBk(f, h) → CMBk−1(f, h)

by setting
∂ ⟨x⟩ :=

∑
y∈critk−1(f,h)

nc(x, y) ⟨y⟩ ,

and then extending by linearity. The proof that ∂2 = 0 is similar to that of Corollary
1.31, and involves studying the boundary ∂Mc(x, y) of the compactification of the space
Mc(x, y) when indf,h(x) = indf,h(y) + 2.

Definition 1.51. A Morse-Bott-Smale quadruple is a quadruple (f, h, g, ρ) consisting
of a Morse-Bott function f ∈ C∞(B), a Morse function h ∈ C∞(crit(f)), a Riemannian
metric ρ on crit(f) such that (h, ρ) is a Morse-Smale pair, and finally a Riemannian metric
g ∈ Rf,h,ρ.

The upshot of our work so far is that we can now speak of the Morse-Bott homology
HMB∗(f, h, g, ρ) of a Morse-Bott-Smale quadruple.

Finally let us discuss independence. Suppose (f−, h−, g−, ρ−) and (f+, h+, g+, ρ+) are
two Morse-Bott-Smale quadruples. As in (1.1) we wish to define a chain map

Φ+
− : CMBk(f

−, h−, g−, ρ−) → CMBk(f
+, h+, g+, ρ+).

This will be done by defining a space N c(x−, x+) and setting

Φ+
−
⟨
x−
⟩
:=

∑
x+∈critk(f+,h+)

nc+− (x−, x+)
⟨
x+
⟩
,

where nc+− (x−, x+) := #2N c(x−, x+). In order to define N c(x−, x+), as before we begin
by choosing a homotopy (fs, gs)s∈R such that

(fs, gs) =

{
(f−, g−), s ≤ −T,
(f+, g+), s ≥ T,

12



for some T > 0. Fix x− ∈ crit(h−) and x+ ∈ crit(h+). The space N c(x,−, x+) is defined
as the union

N c(x−, x+) =
∞∪
k=0

k∪
l=1

N c
k,l(x

−, x+),

where an element of N c
k,l(x

−, x+) is a tuple (2k − 1)-tuple

(u = (u1, . . . , uk), t = (t1, . . . , tk−1)) ,

where uj ∈ C∞(R, B) and tj ≥ 0 are such that:

1. For 1 ≤ j ≤ l, each uj is a non-constant gradient flow line of f−:

∂suj +∇g−f
−(uj) = 0.

For l + 1 ≤ j ≤ k, each uj is a non-constant gradient flow line of f+:

∂suj +∇g+f
+(uj) = 0.

For j = l the map ul is a (possibly constant) flow line of the s-dependent equation

∂sul +∇gsfs(ul) = 0.

2. The first flow line u1 satisfies

lim
s→−∞

u1(s) ∈W u(x−;−∇ρ−h
−),

and the last flow line uk satisfies

lim
s→+∞

uk(s) ∈W s(x+;−∇ρ+h
+).

3. For 1 ≤ j ≤ l − 1 there are critical submanifolds Cij and gradient flow lines vj ∈
C∞(R, Cij ) of h−ij :

∂svj +∇ρ−ij
h−ij (vj) = 0

such that
lim

s→+∞
uj(s) = vj(0),

lim
s→−∞

uj+1(s) = vj(tj).

For l ≤ j ≤ k − 1 there there are critical submanifolds Cij and gradient flow lines
vj ∈ C∞(R, Cij ) of h+ij :

∂svj +∇ρ+ij
h+ij (vj) = 0

such that
lim

s→+∞
uj(s) = vj(0),

lim
s→−∞

uj+1(s) = vj(tj).

Just like in (1.4), one can prove that the map Φ+
− is a chain map, and hence induces a

map
ϕ+− : HMB∗(f

−, h−, g−, ρ−) → HMB∗(f
+, h+, g+, ρ+).

This is again done by studying the boundary components ∂N c(x−, x+) when indf−,h−(x−) =
indf+,h+(x+) + 1. Finally we again have the following functoriality result:

13



Theorem 1.52 (Functoriality in Morse-Bott theory). Suppose (f−, h−, g−, ρ−), (f0, h0, g0, ρ0)
and (f+, h+, g+, ρ+) are three Morse-Bott-Smale quadruples, which give rise to three maps

ϕ0− : HMB∗(f
−, h−, g−, ρ−) → HMB∗(f

0, h0, g0, ρ0),

ϕ+0 : HMB∗(f
0, h0, g0, ρ0) → HMB∗(f

+, h+, g+, ρ+),

ϕ+− : HMB∗(f
−, h−, g−, ρ−) → HMB∗(f

+, h+, g+, ρ+).

Then one has
ϕ+− = ϕ+0 ◦ ϕ0−.

As in Corollary 1.37, this tells us that:

Corollary 1.53. The Morse-Bott homology HMB∗(f, h, g, ρ) is independent of the choice
of Morse-Bott-Smale quadruple.

Since a Morse function is a particular case of a Morse-Bott function (cf. Remark 1.43),
a Morse-Smale pair (f, g) gives rise to a Morse-Bott-Smale quadruple (f, 0, g, 0). But we
already know that the Morse homology is independent of the Morse-Smale pair. This
proves:

Theorem 1.54 (The Morse-Bott homology theorem). If (f, h, g, ρ) is any Morse-Bott-
Smale quadruple, then one has

HMB∗(f, h, g, ρ) ∼= HM∗(B) ∼= H∗(B;Z2).

Exercise 1.55. Fill in the details of Theorem 1.54.
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CHAPTER 2

The Arnold Conjecture
Let (Q,ω) denote a closed symplectic manifold of dimension 2n. By definition this means
that ωn ∈ Ω2n(Q) is a volume form. Equivalently, ω defines a bijective map

Φω : Ω1(Q) → Vect(Q)

by associating to a 1-form ζ the vector field Xζ defined by

ω(Xζ , ·) = ζ(·).

For historical reasons one calls a smooth function H ∈ C∞(Q) a Hamiltonian.

Definition 2.1. The Hamiltonian vector field XH associated to H ∈ C∞(Q) is by def-
inition XH := Φω(−dH). If H ∈ C∞(S1 × Q), written either as H(t, q) or Ht(q), then
we obtain a time dependent vector field XH(t, ·) = XHt(·) where XHt = Φω(−dHt). We
denote by φt

H the flow of XH and call the time-1 map φH := φ1
H a Hamiltonian diffeo-

morphism. The set of Hamiltonian diffeomorphisms forms a group Ham(Q,ω).

Suppose φ ∈ Ham(Q,ω). Then by definition there exists H ∈ C∞(S1 ×Q) such that
φ = φ1

H . In this case we say that H generates φ and write H 7→ φ. The function H is
certainly not unique: suppose G ∈ C∞(S1 ×Q) satisfies φ1

G = 1. Then if

(G#H)(t, q) := G(t, q) +H(t, (φt
G)

−1(q)) (2.1)

then one can readily check that

φt
G#H = φt

G ◦ φt
H .

In particular, in this case one has G#H 7→ φ as well.

Exercise 2.2. Suppose φ ∈ Ham(Q,ω). Show that one can choose H ∈ C∞(S1×Q) such
that H 7→ φ and such that there exists ε > 0 such that H(t, ·) ≡ 0 whenever t ∈ (−ε, ε).

If H,K ∈ C∞(S1 × Q) then we can define H#K in exactly the same way (2.1).
However in general H#K may not be 1-periodic. Nevertheless H#K is 1-periodic if
either (a) φ1

H = 1 or (b) K satisfies the conditions imposed in Exercise 2.2.
Remark 2.3. Since the object of interest is always the Hamiltonian diffeomorphism φ
rather than the particular function H, and since Exercise 2.2 implies that we may always
choose H such that H(t, ·) ≡ 0 whenever t is sufficiently close to 0, from now on we will
always implicitly assume whenever convenient that this is the case. Thus by convention
H#K is always 1-periodic.

Exercise 2.4. Show that if H 7→ φ then H 7→ φ−1, where

H(t, q) := −H(t, φt
H(q)).

Conclude that Ham(Q,ω) really is a group.

Remark 2.5. Suppose t 7→ φt : t ∈ [0, 1] is a path in Ham(Q,ω) with φ0 = 1. Then it is in
fact always possible to choose a Hamiltonian H ∈ C∞(S1 ×Q) such that φt = φt

H .
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Exercise 2.6. Convince yourself that Remark 2.5 is not obvious. Then consult [MS98,
Proposition 10.17] and study the proof.

We denote by Symp0(Q,ω) the set of diffeomorphisms ψ : Q→ Q that satisfy ψ∗ω = ω
and that are isotopic to the identity through such maps.

Lemma 2.7. One has Ham(Q,ω) ⊂ Symp0(Q,ω).

Proof. Suppose φ ∈ Ham(Q,ω), and let H 7→ φ. Compute:

∂

∂t
(φt

H)∗ω = LXHt
ω

= (diXHt
+ iXHt

d)ω

= d(−dHt))

= 0.

Since φ0
H = 1 we have (φ0

H)∗ω = ω and hence also (φ1
H)∗ω = ω. Thus Ham(Q,ω) ⊂

Symp(Q,ω). Since Ham(Q,ω) is path-connected, the result follows.

Exercise 2.8. Suppose ψ ∈ Symp0(Q,ω) and φ ∈ Ham(Q.ω). Show that if H 7→ φ then
H ◦ ψ 7→ ψ ◦ φ ◦ ψ−1. Thus Ham(Q,ω) is a normal subgroup of Symp0(Q,ω).

Remark 2.9. A celebrated of Banyaga [Ban78] says that Ham(Q,ω) is a simple group.
Remark 2.10. Suppose t 7→ φt : t ∈ S1 is a loop of Hamiltonian diffeomorphisms such
that φ0 = 1. Fix q ∈ Q and consider the loop xq(t) := φt(q). One can ask: is the
class [xq] ∈ π1(Q, q) zero? That is, is xq a contractible loop? This would imply that the
evaluation map

π1(Ham(Q,ω)) → π1(Q)

is always trivial. Amazingly, the answer is yes, but to prove this one needs the entire
machinery of Floer homology. Here is a sketch of the proof: choose t0 very close to 1 so
that the paths t 7→ φt(q) : t ∈ [t0, 1] are all contained in geodesically convex subsets of Q.
Floer homology guarantees the existence of at least one point q0 ∈ Q such that φt0(q0) = q0
and such that the loop t 7→ φt(q0) : t ∈ [0, t0] is contractible (see Remark 2.27 below). Since
φt(q0) : t ∈ [t0, 1] is contained in a geodesically convex set, the loop t 7→ φt(q0) : t ∈ [t0, 1]
is also contractible. Thus the concatenated loop t 7→ φt(q0) : t ∈ [0, 1] is contractible.
Now consider the map

evφ : Q→ C∞(S1, Q)

given by
evφ(q) := xq.

Since Q is connected (we always assume this!), the map ev has its image in one con-
nected component of C∞(S1, Q). Since evφ(q0) belongs to the connected component of
C∞(S1, Q) containing the contractible loops, this implies that evφ(q) belongs to the con-
nected component of C∞(S1, Q) containing the contractible loops for every q ∈ Q. Thus
[xq] = 0 ∈ π1(Q, q) for each q ∈ Q.

Definition 2.11. Suppose φ ∈ Ham(Q,ω) and q ∈ fix(φ). Then if H 7→ φ then the path
x(t) := φt

H(q) satisfies
x′(t) = XH(t, x).

We call x a 1-periodic orbit of XH and write x ∈ P1(H). Thus there is a bijection

P1(H) → fix(φH)
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given by x(t) 7→ x(0). Denote by P◦
1 (H) ⊂ P1(H) the set of 1-periodic orbits x(t) that

are contractible.

Exercise 2.12. Suppose φ ∈ Ham(Q,ω). Define fix◦(φ) ⊂ fix(φ) by saying

fix◦(φ) := {x(0) | x ∈ P◦
1 (H), for some H 7→ φ} .

Prove that fix◦(φ) is well defined (i.e. independent of the choice of H 7→ φ). Hint: Use
Remark 2.10.

Definition 2.13. We say that x ∈ P◦
1 (H) is non-degenerate if the linear map

Dφ1
H(x(0)) : Tx(0)Q→ Tx(1)Q

does not have 1 as an eigenvalue. We say that H is non-degenerate if every element of
P◦
1 (H) is non-degenerate. Note that non-degeneracy is clearly a property of the time-1

map φ1
H (i.e. if H 7→ φ and K 7→ φ then H is non-degenerate if and only if K is). Thus

let us say that φ ∈ Ham(Q,ω) is non-degenerate if there exists H 7→ φ such that H is
non-degenerate.

Remark 2.14. As we will in Lemma 3.20, saying that x ∈ P◦
1 (H) is non-degenerate is

equivalent to saying that x is a regular zero of a certain section σH of a Banach bundle in
the sense of Definition 1.3.

Non-degeneracy is a generic property in the following sense: given H ∈ C∞(S1 × Q)

and ε > 0 there exists H̃ ∈ C∞(S1 ×Q) such that
∥∥∥H − H̃

∥∥∥
C∞(S1×Q)

< ε and such that

H̃ is non-degenerate.

Exercise 2.15. Do not be fooled into thinking that all ’reasonable’ Hamiltonians are
non-degenerate. Indeed, suppose H ∈ C∞(Q) is autonomous (i.e. H = H(q) does not
depend on t ∈ S1). Prove that every x ∈ P1(H) is always degenerate!

Let us now state a weak form of the celebrated Arnold Conjecture. The main aim of
this course is to prove this conjecture for a certain special class of symplectic manifolds.

Conjecture 2.16. (The Arnold Conjecture)
Suppose H ∈ C∞(S1 ×Q) is non-degenerate. Then

#P◦
1 (H) ≥

2n∑
k=0

dim Hk(Q;Z2).

Remark 2.17. It follows readily from the Morse homology Theorem 1.40 that if f ∈ C∞(B)
is a Morse function then

#crit(f) ≥
dim B∑
k=0

dim Hk(B;Z2).

The Arnold Conjecture as stated is a statement about P◦
1 (H). Using Exercise 2.12, the

Arnold Conjecture can actually be interpreted as a statement about the set fix◦(φ) for non-
degenerate φ ∈ Ham(Q,ω). Namely, the Arnold Conjecture asserts that if φ ∈ Ham(Q,ω)
is non-degenerate then #fix◦(φ) is at least as big as the sum of the Betti numbers of Q
(with Z2-coefficients). However since Remark 2.10 used the existence of Floer homology,
for now we don’t actually know that the set fix◦(φ) is even well defined! So for now we
will content ourselves with stating the Arnold Conjecture for non-degenerate Hamiltonians
H ∈ C∞(S1 × Q) only (one could alternatively state the weaker conjecture that the set
#fix(φ) of all fixed points is at least as big as the sum of the Betti numbers of Q whenever
φ ∈ Ham(Q,ω) is non-degenerate).
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Let us now define the class of symplectic manifolds which we will work with in this
course.

Definition 2.18. Let (Q,ω) denote a symplectic manifold. There is a well defined map

Iω : π2(Q) → R

given by
Iω([v]) :=

ˆ
S2

v∗ω.

There is a second homomorphism Ic1 : π2(Q) → Z we can associate to (Q,ω). This
will require a little bit more work to define.

Definition 2.19. We will use the sign convention that an almost complex structure J
on Q (that is, a section J ∈ Γ(Q,End(TQ)) such that J2 = −1) is compatible with the
symplectic form if

gJ(·, ·) := ω(J ·, ·) (2.2)

defines a Riemannian metric on Q.

Remark 2.20. The sign convention (2.2) is opposite to the one that you will find in many
textbooks (e.g.. [MS98, MS12]), and in most papers. Throughout the subject there are
many mutually inconsistent sign conventions in common use. In fact, it is not possible
simultaneously have all the ’standard’ sign conventions. In general everyone tries to use as
many standard conventions as possible, and thus everyone has to pay the price somewhere.
We will adopt the convention introduced by Abbondandolo and Schwarz [AS10] (which
also happens to be the one I like and always use in my papers!). If nothing else, the point
of this course is to convince as many people as possible to adopt these sign conventions!

It is well known that the set J (Q,ω) of almost complex structures J on Q that are
compatible with ω is path connected. Let us now fix one: then (TQ, J) → Q is a complex
vector bundle, and hence gives rise to a cohomology class c1(TQ, J) ∈ H2(Q;Z).

Exercise 2.21. Prove that if J̃ was another element of J (Q,ω) then

c1(TQ, J) = c1(TQ, J̃).

Thus we may unambiguously define

c1(Q) := c1(TQ, J) for any J ∈ J (Q,ω).

Definition 2.22. Define
Ic1 : π2(Q) → Z

by
Ic1([v]) :=

⟨
c1(Q), v∗([S

2])
⟩
,

where v∗ : H2(S
2;Z) → H2(Q;Z) is the induced map in homology and [S2] ∈ H2(S

2;Z) is
the fundamental class.

Exercise 2.23. Prove that both Iω and Ic1 are well defined.

Definition 2.24. We say that (Q,ω) is symplectically aspherical if both Iω and Ic1 are
identically zero:

Iω ≡ Ic1 ≡ 0.
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In this course we shall construct the Floer homology of a symplectically aspherical
symplectic manifold. More precisely, we will prove:

Theorem 2.25. Let (Q,ω) be a closed symplectically aspherical symplectic manifold.
Let H ∈ C∞(S1 × Q) be non-degenerate. Then there is a chain complex (CF∗(H), ∂)
associated to H, which is generated by the elements of P◦

1 (H):

CF∗(H) :=
⊕

x∈P◦
1 (H)

Z2 ⟨x⟩ .

The homology of this complex is called the Floer homology of H and is written

H∗(CF∗(H), ∂) := HF∗(H).

Moreover the Floer homology is canonically independent of the choice of H, and hence we
can define the Floer homology of (Q,ω) to be

HF∗(Q,ω) := HF∗(H) for any non-degenerate H ∈ C∞(S1 ×Q).

Finally, there is a canonical isomorphism

HF∗(Q,ω) ∼= H∗+n(Q;Z2).

Exercise 2.26. Use Theorem 2.25 to prove the Arnold Conjecture 2.16 for symplectically
aspherical manifolds.

Remark 2.27. There is also a ’degenerate’ version of the Arnold Conjecture. Before stating
this, recall that if f ∈ C∞(B) is any (not necessarily Morse) function then Ljusternik-
Schnirelman theory implies that

#crit(f) ≥ cuplengthZ2
(B),

where cuplengthZ2
(B) is the largest number N such that there exist cohomology classes

aj ∈ H≥1(B;Z2) such that a1 ⌣ a2 · · · ⌣ aN ̸= 0. See for instance [MS98, Theorem
11.16]. The degenerate form of the Arnold Conjecture states that if φ is any Hamiltonian
diffeomorphism then

#fix◦(φ) ≥ cuplengthZ2
(Q).

For symplectically aspherical manifolds this was proved by Rudyak and Oprea [RO99].

Remark 2.28. Finally we remark that a more ambitious conjecture would be to assert that
for any symplectic manifold (Q,ω) and and ring R of coefficients, one has

#fix◦(φ) ≥
dim Q∑
k=0

dim Hk(Q;R) for all non-degenerate φ ∈ Ham(Q,ω),

and
#fix◦(φ) ≥ cuplengthR(Q) for all φ ∈ Ham(Q,ω).

This is still open in many cases, although it has been proved in far more generality than
just the closed symplectically aspherical case we study here.
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Here is a related conjecture, which is due to Conley, which, as stated below, was
recently proved by Ginzburg [Gin10]. Recall a periodic point of a diffeomorphism φ is a
fixed point of some iterate φk. A periodic point is called simple if it is not an iterate of
another periodic point. Finally, for Hamiltonian diffeomorphisms it again makes sense to
speak of ’contractible’ periodic points: per◦(φ):

per◦(φ) :=
{
x(0) | x ∈ P◦

1 (H
#k), for some H 7→ φ

}
(here H#k = H# . . .#H︸ ︷︷ ︸

k times

generates the flow φk).

Conjecture 2.29. (The Conley Conjecture)
Suppose (Q,ω) is a closed symplectic aspherical manifold. Let φ ∈ Ham(Q,ω). Then

φ has infinitely many contractible simple periodic points.

Time permitting, we will prove a weaker version of this conjecture at the end of the
course, which is due to Salamon and Zehnder [SZ92]. Unlike the Arnold Conjecture 2.16,
which is expected to be true for all symplectic manifolds (cf. Remark 2.28), the Conley
Conjecture is certainly not true for arbitrary symplectic manifolds, as the following exercise
shows.

Exercise 2.30. Show that Conley Conjecture is false on (S2, ω = area form). Hint:
Consider an irrational rotation.
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CHAPTER 3

The Hamiltonian action functional
Definition 3.1. Let ΛQ := C∞

contr(S
1, Q) denote the set of contractible smooth loops

x : S1 → Q. Sometimes it will be convenient to work with the completed loop space
LQ :=W 1,2

contr(S
1, Q). Thus LQ is the completion of ΛQ with respect to the W 1,2-Sobolev

norm. Since dim S1 = 1, elements of LQ are continuous. The reason we will sometimes
prefer LQ is that LQ carries the structure of a Banach manifold, where ΛQ is only a
Frechet manifold.

Exercise 3.2. Convince yourself you know how to define Sobolev spaces for functions
that take values in a manifold.

Definition 3.3. If we fix a Riemannian metric g = ⟨·, ·⟩ on Q we can define a Hilbert
product ⟨⟨·, ·⟩⟩1 on LQ as follows:

⟨⟨ξ, ζ⟩⟩1 :=
ˆ
S1

⟨ξ(t), ζ(t)⟩ dt+
ˆ
S1

⟨∇tξ(t),∇tζ(t)⟩ dt,

where if ξ, ζ ∈ Γ(x∗TQ) then ∇t denotes the covariant derivative (with respect to the
Levi-Civita connection of g) along the curve x.

Theorem 3.4. The space (LQ, ⟨⟨·, ·⟩⟩1) is a complete Riemannian Banach manifold.

Nevertheless, in some sense the key idea of Floer [Flo88] was to ignore Theorem 3.4!
Instead of working on a nice Hilbert manifold, his masterstroke was to realise that one
could instead work on something far less pleasant...

Definition 3.5. Fix a Riemannian metric g = ⟨·, ·⟩ on Q and equip ΛQ (not LQ) with
the L2-inner product:

⟨⟨ξ, ζ⟩⟩0 :=
ˆ
S1

⟨ξ(t), ζ(t)⟩ dt.

This L2-metric is not complete, and hence does not define the structure of a Hilbert space
on the tangent spaces to ΛQ.

Remark 3.6. In Floer theory we will study the “negative gradient flow” of the Hamiltonian
action functional AH (cf. Definition 3.10) with respect to an L2-metric of the form given
in Definition 3.5. This is not a “flow” in the strict sense of the word, since, as we will
see, the problem is not well-posed. That is, the corresponding “flow” Φs of −∇AH is not
a real flow: it is not necessarily true that for any given x ∈ ΛQ there exists a solution
u : R → ΛQ of the initial value problem

∂su = −∇AH(u), u(0) = x.

Such a flow is called unregularized [Flo88]. One could obtain a real flow by working instead
with the stronger metric ⟨⟨·, ·⟩⟩1 from Definition 3.3. If one’s goal was to do Morse theory
with the functional AH then this would make sense. However, Morse theory does not work
with AH , since, as we will see, the relevant Morse indices are always infinite.

Let D := {z ∈ C | |z| ≤ 1}.

Definition 3.7. Suppose x ∈ ΛQ. Define a capping of x to be a map x ∈ C∞(D, Q)
such that x(e2πit) = x(t) for all t ∈ S1. Similarly if x ∈ LQ a capping of x is any map
x ∈ C0(D2, Q) ∩W 1,2(D2, Q) such that x(e2πit) = x(t) for all t ∈ S1.
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The following lemma is the reason why we assume that the map Iω : π2(Q) → R from
Definition 2.18 is identically zero.

Lemma 3.8. Suppose x ∈ ΛQ. Let x and y be two cappings of x. Then
ˆ

D
x∗ω =

ˆ
D
y∗ω.

Proof. Without loss of generality we may assume that there exists ε > 0 such that

x(z) = x(z/ |z|) and y(z) = y(z/ |z|)

for all z ∈ D with 1− ε ≤ |z| ≤ 1. Then there is a well defined map

v : S2 = C ∪ {∞} → Q

defined by

v(z) =

{
x(z), |z| ≤ 1,

y(1/ |z|), |z| ≥ 1.

Then ˆ
D
x∗ω −

ˆ
D
y∗ω =

ˆ
S2

v∗ω = Iω([v]) = 0.

Exercise 3.9. Check that if x ∈ LQ then Lemma 3.8 still holds.

We now finally define the Hamiltonian action functional.

Definition 3.10. Let H ∈ C∞(S1 ×Q) and define the Hamiltonian action functional

AH : ΛQ→ R

by
AH(x) :=

ˆ
D
x∗ω −

ˆ
S1

Ht(x(t))dt,

where x is any capping of x. Note that AH extends to a well defined functional on LQ by
Exercise 3.9.

The following result is key to all that follows:

Lemma 3.11. It holds that
crit(AH) = P◦

1 (H).

Proof. Fix x ∈ ΛQ and let ξ ∈ Γ(x∗TQ). Choose a path (xs)s∈(−ε,ε) ⊂ ΛQ such that
x0 = x and ξ = ∂

∂s

∣∣
s=0

xs. Let (xs) ⊂ C∞(D, Q) denote a smooth family of cappings of xs,
and set define ξ ∈ Γ(x∗TQ) by

ξ(z) :=
∂

∂s

∣∣∣
s=0

xs(z).

Now we compute:

dAH(x)[ξ] =
∂

∂s

∣∣∣
s=0

AH(xs)

=
∂

∂s

∣∣∣
s=0

(ˆ
D
x∗sω −

ˆ
S1

Ht(xs(t))dt

)
.
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Now
∂

∂s

∣∣∣
s=0

ˆ
D
x∗sω =

ˆ
D
x∗0(Lξω)

=

ˆ
D
x∗0(diξω)

(∗)
=

ˆ
S1

x∗(iξω)

=

ˆ
S1

ω(ξ(t), x′(t))dt,

where (∗) used Stokes’ theorem. Similarly

∂

∂s

∣∣∣
s=0

ˆ
S1

Ht(xs(t))dt =

ˆ
S1

dHt(x(t))[ξ(t)]dt = −
ˆ
S1

ω(XHt(x(t)), ξ(t))dt.

Putting this together we see that

dAH(x)[ξ] =

ˆ
S1

ω(ξ(t), x′(t)−XHt(x(t))dt. (3.1)

Definition 3.12. Suppose J ∈ J (Q,ω) is an ω-compatible almost complex structure (cf.
Definition 2.19). Let gJ := ω(J ·, ·) denote the corresponding Riemannian metric, and let

⟨⟨ξ, ζ⟩⟩J :=

ˆ
S1

gJ(ξ(t), ζ(t))dt

denote the L2-inner product, as in Definition 3.5.

Definition 3.13. As above, suppose J ∈ J (Q,ω) is an ω-compatible almost complex
structure. Define a vector field ∇JAHon ΛQ by setting

∇JAH(x) := J(x)(x′(t)−XHt(x(t))).

Lemma 3.14. The vector field ∇JAH is the L2-gradient of AH with respect to ⟨⟨·, ·⟩⟩J .
In other words,

dAH(x)[ξ] = ⟨⟨∇JAH(x), ξ⟩⟩J .

Proof. Immediate from (3.1):

dAH(x)[ξ] =

ˆ
S1

ω(ξ(t), x′(t)−XHt(x(t))dt

=

ˆ
S1

ω
(
J(x) · J(x)(x′(t)−XHt(x(t))), ξ(t)

)
dt

=

ˆ
S1

gJ(J(x)(x
′(t)−XHt(x(t)), ξ(t))dt

= ⟨⟨∇JAH(x), ξ⟩⟩J .

Now consider a Banach bundle E → LQ whose fibre over x is given by L2(S1, x∗TQ).
Define a section

σJ,H : LQ→ E (3.2)
by

σJ,H(x) := J(x)(x′(t)−XHt(x(t))) = ∇JAH(x).
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Lemma 3.15. The vertical derivative DvσJ,H(x) at x ∈ P◦
1 (H) is given by

DvσJ,H(x) :W 1,2(S1, x∗TQ) → L2(S1, x∗TQ),

DvσJ,H(x)[ξ] := J(x)(∇tξ −∇ξXHt(x)).

Proof. Choose a family (xs)s∈(−ε,ϵ) ⊂ LQ such that x0 = x and ∂
∂s

∣∣
s=0

xs(t) = ξ(t). Then

DvσJ,H(x)[ξ] =
∂

∂s

∣∣∣
s=0

σJ,H(xs)

=
∂

∂s

∣∣∣
s=0

J(xs)(x
′
s(t)−XHt(xs(t))

=
∂

∂s

∣∣∣
s=0

J(xs)
(
x′(t)−XHt(x(t))

)︸ ︷︷ ︸
=0

+ J(x)
∂

∂s

∣∣∣
s=0

(x′s(t)−XHt(xs(t))

= J(x)∇ξx
′ − J(x)∇ξXHt(x)

where the last line used the fact that the Levi-Civita connection is torsion free.

Let us now restrict to the linear setting for a while. We equip R2n with the coordinates

(x, y) = (x1, . . . , xn, y1, . . . , yn),

and the standard Euclidean inner product x ·y. In order to minimize notational confusion
we denote by ⟨·, ·⟩ the Euclidean inner product on R2n , so that given z = (x, y) and
w = (u, v) we have

⟨z, w⟩ := x · u+ y · v.
Define ω0 ∈ Ω2(R2n) by

ω0((x, y), (u, v)) := u · y − x · v.
Let J0 ∈ R2n be the matrix

J0 :=

(
0 −1n

1n 0

)
, (3.3)

where 1n is the n× n identity matrix. Thus

ω0(J0(x, y), (u, v)) = x · u+ y · v = ⟨(x, y), (u, v)⟩ .

The L2 inner product on L2(S1,R2n) is given by

⟨⟨ξ, ζ⟩⟩ :=
ˆ
S1

⟨ξ, ζ⟩ dt.

The following lemma is standard undergraduate functional analysis.

Lemma 3.16. Let S : S1 → Sym(R2n) denote a smooth loop of symmetric matrices. Let
Ψ : [0, 1] → Sp(R2n, ω0) denote the fundamental solution of the equation

Ψ′(t) = J0 · S(t) ·Ψ(t), Ψ(0) = 1.

Let
σS :W 1,2(S1,R2n) → L2(S1,R2n)

denote the map
σS(w)(t) := J0 · w′(t) + S(t) · w(t).

Then σS is a self-adjoint Fredholm operator of index zero. Thus σS defines an unbounded
self-adjoint operator on L2(S1,R2n) with spectrum spec(σS) consisting of discrete eigen-
values of finite multiplicity that accumulate only at infinity. Moreover

dim ker σS = dim ker (Ψ(1)− 1). (3.4)
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Exercise 3.17. Prove Lemma 3.16. Hint: To show (3.4), note that if Ψ(1)w0 = w0 and
w(t) := Ψ(t)w0 then w is a loop that satisfes σS(w) = 0. See also the discussion on
page 41.

We now define the class of trivialisations of the pullback bundles x∗TQ that we will
use.

Definition 3.18. Let x ∈ ΛQ and J ∈ J (Q,ω). A symplectic trivialisation of the bundle
x∗TQ→ S1 is a map

Φ : S1 × R2n → x∗TQ,

written (t, p) 7→ Φt(p), such that

Φ∗
tω|x(t) = ω0, ΦtJ0 = JΦt.

Moreover a trivialisation Φ is called admissible if

Φt(p) = Φe2πit(p)

for a symplectic trivialisation Φ : D×R2n → x∗TQ of a capping x : D → Q of x. The next
lemma is the reason why we require that the map Ic1 : π2(Q) → Z from Definition 2.22
vanishes.

Lemma 3.19. For any x ∈ ΛQ there always exists an admissible symplectic trivialisation
Φ of x∗TQ. Moreover any two admissible symplectic trivialisations are homotopic.

Proof. The existence of an admissible symplectic trivialisation can be proved using Gram-
Schmidt, see [MS98, Lemma 2.65] for details. Two prove that any two such trivialisations
are homotopic we proceed to two steps. First, suppose x is a capping and Φ and Ψ are
two trivialisations of x∗TQ. Then z 7→ Φ

−1
z ◦Ψz defines a map D → U(n,C). Every such

map is smoothly homotopic to the constant map z 7→ 12n. Now we prove that if x and y
are two cappings with corresponding trivialisations Φ and Ψ then the two trivialisations
Φ := Φ|∂D and Ψ := Ψ|∂D are homotopic. Without loss of generality we may assume that
there exists ε > 0 such that

x(z) = x(z/ |z|) and Φz = Φz/|z|

for all z ∈ D with 1− ε ≤ |z| ≤ 1, and similarly for y and Ψ. Then there is a well defined
map

v : S2 = C ∪ {∞} → Q

defined by

v(z) =

{
x(z), |z| ≤ 1,

y(1/ |z|), |z| ≥ 1.

The bundle v∗TQ → S2 is trivial if and only if c1(v∗TQ) = 0. Since we assume
that Ic1 ≡ 0, this is indeed the case. Thus there exists a symplectic trivialisation
Θ : S2 × R2n → v∗TQ. By restricting to the upper and lower hemispheres, we obtain
two new trivialisations Θ+ of x∗TQ and Θ− of y∗TQ. The argument above shows that Φ
is homotopic to Θ+ and Ψ is homotopic to Θ−. The claim follows.

We will see later on why it is so important that any two admissible symplectic trivial-
isations are homotopic. For now let us simply note the following lemma.
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Lemma 3.20. A zero x ∈ P◦
1 (H) is a regular zero of σJ,H in the sense of Definition 1.3

if and only if x is a non-degenerate element of P◦
1 (H) in the sense of Definition 2.13.

Proof. Pick an admissible symplectic trivialisation Φ : S1 × R2n → x∗TQ of x. Let

Ψ(t) := Φ−1
t ◦Dφt

H(x(0)) ◦ Φ0

and let
S(t) := Φ−1

t ◦ J(∇tΦ−∇ΦXHt(x)).

To prove that S is symmetric we define

Vj(t) := Φtej ,

where ej is the jth standard basis vector in R2n. Abbreviate X(t) := XHt(x(t)) and
⟨·, ·⟩ := gJ(·, ·) = ω(J ·, ·). If S = [Sij ] then

Sij =
⟨
Vi, J(∇tVj −∇VjX

⟩
= ⟨Vi, J [X,Vj ]⟩ = ω(Vi, [X,Vj ]). (3.5)

ecall that if α is a 1-form and β is a 2-form and U, V,W are vector fields then:

dα(U, V ) = Uα(V )− V α(U)− α([U, V ]),

and

dβ(U, V,W ) = Uβ(V,W )+V β(W,U)+Wβ(U, V )−β([U, V ],W )−β([V,W ], U)−β([W,U ], X).

Apply these formulae with α = dH and β = ω to discover that

Viω(Vj , X)− Vjω(Vi, X)− ω([Vi, Vj ], X) = 0,

and

0 = Viω(Vj , X)− Vjω(Vi, X) +Xω(Vi, Vj)− ω([Vi, Vj ], X)− ω([Vj , X], Vi)− ω([X,Vi], Vj)

= Xω(Vi, Vj)− ω([Vj , X], Vi)− ω([X,Vi], Vj).

Since the basis {Vi} is a symplectic basis, ω(Vi, Vj) is constant and hence Xω(Vi, Vj) = 0.
Thus we have shown that

ω(Vj , [X,Vi]) = ω([Vj , X], Vi) = ω(Vi, [X,Vj ]),

and hence from (3.5) we see that S is symmetric as claimed.
Next we wish to show that Ψ̇ = J0SΨ. To do this one differentiates the equation

Φt ◦Ψt = Dφt
H(x(0)) ◦ Φ0

with respect to t to conclude that

ΦtΨ̇t = J∇tΦ− J∇ΦXHt(x)Ψt,

and then since Φt ◦ J0 = J ◦ Φt we see that

ΦtJ0Ψ̇t = JΦtΨ̇t = −∇tΦ+∇ΦXHt(x) = −ΦtS(t)Ψt.

Since Φt is an isomorphism the result finally follows.
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The main result of this section is the following theorem.

Theorem 3.21. (Non-degeneracy is a generic property)
There exists a subset Hreg ⊂ C∞(S1 × Q) of second category with the property that

if H ∈ Hreg then every zero x of σJ,H is regular in the sense of Definition 1.3.

In order to prove Theorem 3.21 we will use the following result. Let B and X denote
Banach manifolds and suppose E → B × X is a Banach bundle. Suppose σ : B × X → E
is a section. We write

σ(b, x) = σb(x) = σx(b)

for b ∈ B and x ∈ X .

Theorem 3.22 (The Transversality Theorem). Suppose σ is a section of class Ck. Assume
that for all x ∈ X and all b ∈ σ−1

x (0), the vertical derivative

Dvσx(b) : TbB → E(b,x)

is a Fredholm operator of index l, with

k ≥ max{1, 1 + l}.

Suppose in addition for all (b, x) ∈ σ−1(0), the vertical derivative

Dvσ(b, x) : TbB × TxX → E(x,b)

is surjective. Then the set

Xreg :=
{
x ∈ X | Dvσx(b) is surjective for each b ∈ σ−1

x (0)
}

is a residual (and hence dense) subset of X .

In order to prove Theorem 3.22 we begin with the following linear result.

Proposition 3.23. Let X,Y,X denote Banach spaces. Suppose T : X → Y is a Fredholm
linear operator and B : Z → Y is a bounded linear operator. Then the range ranT ⊕ B
is a closed subspace of Y which admits a finite dimensional complement. If T ⊕ B is
surjective then ker T ⊕B admits a topological complement: that is, there exists a closed
subspace V ⊂ X × Z such that

X × Z = (ker T ⊕B) ⊕ V, (ker T ⊕B) ∩ V = {(0, 0)}.

Moreover the projection π onto the second factor:

π : ker T ⊕B → Z

is Fredholm, with ker π ∼= ker T and cokerπ ∼= cokerT . In particular,

indπ = indT.

Proof. Firstly ranT is closed and Y/ranT is finite dimensional. Thus if pr : Y → Y/ranT
denotes the projection operator then the subspace pr−1(pr(ranB)) is closed. This is
precisely ranT ⊕B. A complement W of ranT ⊕B is contained in the finite dimensional
space Y/ranT and hence is closed.

Since ker T is finite dimensional it admits a topological complement X1. Next, ranT is
closed with finite dimensional complement cokerT , and thus surjectivity of T ⊕B implies

27



that cokerT ⊂ ranB. Thus there exists a finite subset {z1, . . . , zk} of Z such that {Bzj}
is a basis of cokerT . Now define

S : Y = ranT ⊕ cokerT → ker T ⊕X1 ⊕ Z

by setting

S(y1, y2) :=

0, x,
k∑

j=1

ajzj

 ,

where Tx = y1 and y2 =
∑k

j=1 ajBzj . Then S is a right inverse of T ⊕ B, and hence
ker T ⊕B admits a topological complement.

For the last statement, set K := ker T ⊕ B, so that π : K → Z. One easily checks
that ker π = ker T ⊕ 0. Finally,

cokerπ = Z/ranπ

= Z/B−1(ranT ))
∼= ranB/ranT ∩ ranB
∼= Y/ranT = cokerT.

Next, we quote the following version of the classical Sard-Smale transversality theorem.

Theorem 3.24 (Sard-Smale transversality). Suppose ψ : M → N is a Ck- map between
separable Banach manifolds. Assume that ψ is Fredholm of index l, and suppose that
k ≥ max{1, 1 + l}. Then the set of regular values of ψ is a residual (and hence dense)
subset of N .

We can now prove Theorem 3.22.

Proof. (of Theorem 3.22)
We apply Proposition 3.23 with

T = Dvσx(b), B = Dvσb(x).

Thus Proposition 3.23 implies that for any (b, x) ∈ σ−1(0) the vertical derivative Dvσ(b, x)
has a right inverse. Thus 0 is a regular value of x, and thus the Implicit Function Theorem
1.6 implies that the universal moduli space M := σ−1(0) admits the structure of a Ck-
Banach manifold.

Moreover if π : M → X denotes the projection then the last part of Proposition
3.23 tells us that Dπ(b, x) is Fredholm for any (b, x) ∈ M and of index equal to that of
T = Dvσx(b). This means that we may apply the Sard-Smale Theorem 3.24 to conclude
the regular values of π form a residual subset of X . To complete the proof, we prove that
x ∈ X is a regular value of π if and only if Dvσb(x) is surjective for all x ∈ σ−1

b (0).
In other words, we must prove that

Dπ(b, x) is surjective ⇔ Dvσx(b) is surjective for all b ∈ σ−1
x (0).

Suppose that Dvσx(b) is surjective for all b ∈ σ−1
x (0). Fix x̂ ∈ TxX . Since Dvσx(b) is

surjective there exists b̂ ∈ TbB such that

Dvσx(b)[b̂] = Dvσb(x)[x̂] ∈ E(b,x).
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Then
Dvπ(b, x)[b̂, x̂] = x̂

and thus Dvπ(b, x) is surjective as required.
Conversely, suppose that Dvπ(b, x) is surjective. Fix v ∈ E(b,x). Since Dvσ(b, x) is

surjective. there exists (b̂, x̂) such that Dvσ(b̂, x̂) = v. Thus

Dvσx(b)[b̂] +Dvσb(x)[x̂] = v.

Since Dvπ(b, x) is surjective there exists b̂1 such that

Dvσx(b)[b̂1] +Dvσb(x)[x̂] = 0.

Thus if b̂2 := b̂− b̂1 then
Dvσx(b)[b̂2] = v.

This completes the proof.

Remark 3.25. In the setting of Theorem 3.22, since ranDvσ(b, x) is necessarily closed (as
Dvσb(x) is bounded as k ≥ 1 and Dvσx(b) is Fredholm, cf. the proof of the first statement
of Proposition 3.23 above), in order to show that Dvσ(b, x) is surjective it is sufficient to
show that annhilator of its image is zero. Thus it suffices to show that

(ranDvσ(b, x))ann = 0,

where

(ranDvσ(b, x))ann =
{
φ ∈ E∗

(b,x) | φ(v) = 0 for all v ∈ ranDvσ(b, x)
}
.

Exercise 3.26. Prove this using the Hahn-Banach theorem.

We will now prove Theorem 3.21.

Proof. (of Theorem 3.21)
The proof is an easy application of Theorem 3.22. We take B = LQ and X = Ck(S1×

Q), and we take E → LQ× Ck(S1 ×Q) to be the Banach bundle whose fibre over (x,H)
is simply L2(S1, x∗TQ). For a given fixed almost complex structure J on Q that is ω-
compatible, we define as before

σ(x,H) := σJ,H(x) = J(x)(x′(t)−XHt(x(t))) = ∇JAH(x).

We have already shown that the map operator DvσH(x) is a Fredholm operator of index
0, and thus by Theorem 3.22 we need only show that Dvσ(x,H) is surjective for all
(x,H) ∈ σ−1(0). Moreover by Remark 3.25 it is sufficient to show that if ŷ ∈ L2(S1, x∗TQ)
has the property that
ˆ
S1

⟨
Dvσ(x,H)[x̂, Ĥ], ŷ

⟩
J
dt = 0, for all (x̂, Ĥ) ∈W 1,2(S1, x∗TQ)× Ck(S1 ×Q)

then ŷ ≡ 0.
This is proved in two stages. Firstly, taking Ĥ = 0 we see that

ˆ
S1

⟨DvσH(x)[x̂], ŷ⟩J dt = 0 (3.6)
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for all x̂ ∈W 1,2(S1, x∗TQ), where we are using the fact that

Dvσ(x,H)[x̂, Ĥ] = DvσH(x)[x̂] +Dvσx(H)[Ĥ].

We claim that the fact that (3.6) holds for all x̂ implies that ŷ ∈ Ck(S1, x∗TQ). To see
this, it is convenient to go back to the local trivialisation picture used in the proof of
Lemma 3.20. First note that x is certainly of class Ck, since x′ = XHt(x) with H of
class Ck. If we choose a symplectic trivialisation Φt : R2n → Tx(t)Q then if we define
v ∈ L2(S1,R2n) by requiring that

ŷ(t) := Φt(v(t))

then (3.6) becomes the assertion:
ˆ
S1

⟨
J0w

′(t) + S(t) · w(t), v(t)
⟩
dt = 0

for all w ∈W 1,2(S1,R2n), where S is a Ck-smooth path [0, 1] → Sym(R2n). This equation
says that v is a weak solution to the equation(

J0
d

dt
+ S

)
[v] = 0,

where we are using the fact that S is symmetric. But clearly any weak solution is neces-
sarily a strong solution, and hence we see that v is of class Ck. Thus so is ŷ. Now we know
that ŷ is of class Ck, it is easy to prove that ŷ ≡ 0. Indeed, suppose for contradiction that
there exists t0 ∈ S1 such that ŷ(t0) ̸= 0. Choose ĥ ∈ Ck(Q) such that

dĥ(x(t0))[ŷ(t0)] > 0.

Since ŷ is continuous, there exists ϵ > 0 such that

dĥ(x(t))[ŷ(t)] ≥ 0, for all t ∈ (t0 − ϵ, t0 + ϵ).

Choose a smooth cutoff function β ∈ C∞(S1, [0, 1]) such that β(t0) = 1 and β(t) = 0 for
t /∈ (t0 − ϵ, t0 + ϵ). Finally set

Ĥt(x) := β(t)ĥ(x).

Then by construction we have
ˆ
S1

⟨
Dvσ(x,H)[0, Ĥ], ŷ

⟩
J
dt = −

ˆ
S1

dĤt(x(t))[ŷ(t)]dt < 0,

which contradicts (3.6).
To finish the proof of the Theorem we need to go from the Ck-statement to the C∞-

infinity statement: we have shown that for each k ∈ N there exists a residual subset
Hk

reg ⊂ Ck(S1 ×Q) such that if H ∈ Hk
reg then all elements of P1(H) are non-degenerate.

Since P1(H) is finite by the Exercise 3.28 below, it follows that Hk
reg is not only a dense

subset but also an open subset. Now by the Baire Category theorem we complete the
proof with

Hreg :=
∞∩
k=1

Hk
reg.
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Exercise 3.27. Suppose H ∈ Ck(S1 × Q). Let φH = φ1
H denote the time-1 map. Let

x(t) ∈ P1(H) and set q = x(0). Let ∆ ⊂ Q × Q denote the diagonal. Prove that x is a
non-degenerate element of P1(H) if and only if (q, q) is a transverse point of intersection
of ∆ and graph(φH).

Exercise 3.28. Prove that if H ∈ Ck(S1 × Q) has the property that every element of
P1(H) is non-degenerate then P1(H) is a finite set. Hint: Use the previous exercise.
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CHAPTER 4

The Floer equation and elliptic regularity
From now on we will always assume our given Hamiltonian H ∈ C∞(S1 ×Q) belongs to
Hreg. Fix once and for all an ω-compatible almost complex structure J on Q.

Suppose u : R → ΛQ is a negative gradient flow line of AH . That is,

d

ds
u(s) +∇JAH(u(s)) = 0, (4.1)

where ∇JAH was defined in Definition 3.13. A map u : R → ΛQ is the same thing as a
map u : R × S1 → Q, and thought of in this way the equation (4.1), which is an ODE on
the loop space, becomes a PDE on Q:

∂su+ J(u)∂tu− J(u)XHt(u) = 0. (4.2)

Now we can explain Floer’s brilliant observation. The point is, that the ODE (4.1) is a
terrible ODE to try and do Morse theory with, as it is not well posed (cf. Remark 3.6).
Nevertheless the PDE (4.2) is a nice equation to work with! Indeed, one can view (4.2)
as a perturbation of the equation

∂su+ J(u)∂tu = 0,

which is the equation that u should satisfy in order to be a J-holomorphic map, as defined
by Gromov [Gro85]. Gromov proved that J-holomorphic maps have lots of nice properties:
for instance, typically they come in finite-dimensional families. Thus it is reasonable to
hope that the perturbed equation (4.2) should also share most of these nice properties.
This is indeed the case, and this is the key to why Floer homology works.

Definition 4.1. Fix p > 2 and consider the space W 1,p(R×S1, Q) of maps u : R×S1 → Q
that are locally of class W 1,p. This is the completion of the space C∞(R × S1, Q) in the
Sobolev W 1,p-norm. Note we really need p > 2: since R × S1 is 2-dimensional, elements
of Sobolev class W 1,p are continuous only when p > 2. Thus the space W 1,p(R× S1, Q) is
only well defined when p > 2!

Remark 4.2. For p ≤ 2 one can still define this space by choosing an embedding Q ↪→ RN

for some N and then setting

W 1,p(R × S1, Q) :=
{
u ∈W 1,p(R × S1,RN ) | u(s, t) ∈ Q for a.e. (s, t)

}
.

Nevertheless for p ≤ 2 this space depends on the specific choice of embedding Q ↪→ RN .
Let Ep denote the Banach bundle over W 1,p(R×S1, Q) whose fibre over u is the space

Ep
u = Lp(R × S1, u∗TQ). (4.3)

Definition 4.3. The Floer operator

∂J,H :W 1,p(R × S1, Q) → E

is defined by
∂J,H(u) := ∂su+ J(u)∂tu− J(u)XHt(u).
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The aim in the next few lectures is to prove that the linearization Dv∂J,H(u) at a
zero u is a Fredholm operator, and that (after a small perturbation of H away from the
elements of P1(H)), every zero of ∂J,H is regular. This will allow us to define the moduli
spaces used in Floer homology. As in the definition of the spaces B(x, y) on page 4, in
order to get a nice Fredholm operator we need to restrict ∂J,H to an appropriate path
space.

Fix a ’background’ Riemannian metric g on Q. This metric will be used to define the
exponential map exp in the next definition. Since Q is compact, any two Riemannian
metrics on Q define the same topology, and hence the choice of g makes no difference to
the spaces B1,p(x−, x+) defined below.

Definition 4.4. Fix x−, x+ ∈ P1(H). We define the space

B1,p(x−, x+) ⊂W 1,p(R × S1, Q)

to be the subset of maps u ∈ W 1,p(R × S1, Q) with the following additional property:
there exists s0 > 0 and sections

ξ− ∈W 1,p((−∞,−s0]× S1, (x−)∗TQ), ξ+ ∈W 1,p([s0,+∞)× S1, (x+)∗TQ)

such that for |s| ≥ s0 one has

u(s, t) = expx±(t)(ξ
±(s, t)). (4.4)

Exercise 4.5. Convince yourself that the space B1,p(x−, x+) carries the structure of a
Banach manifold, and that

TuB1,p(x−, x+) =W 1,p(R × S1, u∗TQ).

Moreover the bundle Ep defined in (4.3) restricts to give a well defined Banach bundle
Ep → B1,p(x−, x+). Finally, prove that

∂J,H : B1,p(x−, x+) → Ep

is a smooth section. Hint: Ignore this exercise. It is very boring and tedious.

In order to get any further we will need to recall two elliptic results, which we will
quote without proof. Let J0 denote the standard almost complex structure on R2n defined
in (??), and let

∂ := ∂s + J0∂t

denote standard Cauchy-Riemann operator on R2n.

Theorem 4.6 (The Calderon-Zygmund inequality). Let 1 < p < +∞. There exists a
constant c(p, n) > 0 such that

∥∇u∥Lp(C) ≤ c(p, n)
∥∥∂u∥∥

Lp(C)

for every compactly supported smooth map u : C → R2n.

This theorem is highly non-trivial. See for instance [MS12, Appendix B] for a detailed
proof. A density argument then gives the following result, which we leave as an exercise:

Exercise 4.7. Let 1 < p < +∞. There exists a constant c(p, n) > 0 such that for every
map u ∈W 1,p(R × S1,R2n) it holds that

∥∇u∥Lp(R×S1) ≤ c(p, n)
∥∥∂u∥∥

Lp(R×S1)
. (4.5)
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Definition 4.8. Suppose Ω ⊂ C is an open domain and u, f ∈ L1
loc(Ω). Recall we say

that u is a weak solution to the equation

∂u = f

if for every φ ∈ C∞
c (C) one has

ˆ
Ω
⟨u, ∂φ⟩ dsdt = −

ˆ
Ω
⟨f, φ⟩ dsdt,

where here
∂ := ∂s − J0∂t.

Theorem 4.9 (Local regularity for weak solutions). Suppose Ω ⊂ C is an open domain
and f ∈ W k,p

loc (Ω). Then if u ∈ Lp
loc(Ω) is a weak solution to the equation ∂u = f then

u ∈W k+1,p
loc (Ω). Moreover, if U ⊂ Ω is an open domain such that U ⊂ Ω then there exists

a constant c = c(p, k, U,Ω) > 0 such that

∥u∥Wk+1,p(U) ≤ c
(
∥f∥Wk,p(Ω) + ∥u∥Lp(Ω)

)
. (4.6)

In particular, if f is smooth then so is u.

This is actually a (fairly) easy consequence of Theorem 4.6.

Exercise 4.10. Use Theorem 4.6 to prove Theorem 4.9. Hint: See [MS12, Appendix B]
if you get stuck.

Let us now fix two critical points x−, x+ ∈ P1(H), and assume u ∈ B1,p(x−, x+)
satisfies ∂J,H(u) = 0. We would like to prove the following elliptic regularity result:

Theorem 4.11 (Elliptic regularity). If ∂J,H(u) = 0 then u ∈ C∞(R × S1, Q).

This result will take a long time to prove. We will begin by proving a linear version:

Theorem 4.12. Let 1 < p <∞ and suppose

S ∈ C∞(R × S1, L(R2n)) ∩ L∞(R × S1, L(R2n))

is a smooth map such that the limits S±(t) := lims→±∞ S(s, t) exist and such that

lim
s→±∞

∂S

∂s
(s, t) = 0,

uniformly in t. Let

DS :W 1,p(R × S1,R2n) → Lp(R × S1,R2n)

denote the perturbed Cauchy-Riemann operator

DSu := ∂su+ J0∂tu+ Su.

Then:

1. Suppose u ∈ Lp(R × S1,R2n) is a weak solution of DSu = 0. Then u ∈ W 1,p(R ×
S1,R2n) ∩ C∞(R × S1,R2n).
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2. If u ∈W 1,p(R × S1,R2n) then there exists a constant c = c(p) > 0 such that

∥u∥W 1,p(R×S1) ≤ c
(
∥DSu∥Lp(R×S1) + ∥u∥Lp(R×S1)

)
. (4.7)

Remark 4.13. Strictly speaking we do not need to prove (4.7) in order to prove Theorem
4.11. However (4.7) will be useful when it comes to showing that Dv∂J,H(u) is a Fredholm
operator.

Proof. The proof of (1) is an easy consequence of Theorem 4.9. Indeed, if u ∈ Lp(R ×
S1,R2n) is a weak solution to the equation DSu = 0 then u is a weak solution of

∂u = −Su,

where ∂ = ∂s + J0∂t. Note that Su ∈ Lp(R × S1,R2n). Theorem 4.9 then implies that
u ∈ W 1,p

loc . But then Su ∈ W 1,p
loc . Thus another application of Theorem 4.9 implies that

u ∈W 2,p
loc . By induction, we see that u ∈W k,p

loc for all k ∈ N, and hence u ∈ C∞(R×S1,R2n)
by the Sobolev Embedding Theorem.

To prove (2), we first note that the Calderon-Zygmund inequality (Theorem 4.6) im-
plies that if u ∈ C∞

c (R × S1,R2n) then there exists a constant c1 > 0 such that

∥∇u∥Lp(R×S1) ≤ ∥∂u∥Lp(R×S1),

and hence

∥u∥W 1,p(R×S1) ≤ c1
(
∥∂u∥Lp(R×S1) + ∥u∥Lp(R×S1)

)
≤ c1

(
∥DSu∥Lp(R×S1) +

(
1 + ∥S∥L∞(R×S1)

)
∥u∥Lp(R×S1)

)
≤ c

(
∥DSu∥Lp(R×S1) + ∥u∥Lp(R×S1)

)
,

where c = c1
(
1 + ∥S∥L∞(R×S1)

)
.

Here is an extension of Theorem 4.9. Note that if ∂u = f then

∆u = ∂∂u = ∂f.

Lemma 4.14. Suppose Ω ⊂ R × S1 is an open domain and u, f, g, h,∈ Lp
loc(Ω), and

suppose that u is a weak solution of the equation:

∆u = f + ∂sg + ∂th

(where ∂sg and ∂th are interpreted as distributions). Then in fact u ∈W 1,p
loc (Ω). Moreover

if U ⊂ Ω is an open domain with U compact, U ⊂ Ω, then there exists a constant
c = c(p, U,Ω) such that

∥u∥W 1,p(U) ≤ c
(
∥f∥Lp(Ω) + ∥g∥Lp(Ω) + ∥h∥Lp(Ω) + ∥u∥Lp(Ω)

)
.

Exercise 4.15. Prove Lemma 4.14.

We now move onto the proof of the non-linear version, Theorem 4.11. By choosing a
finite atlas of charts on Q, we may assume Q = R2n.
Remark 4.16. Warning: Do not confuse ’linear’ and ’working on R2n’. As we shall see, the
non-linear version is much harder, despite the fact that superficially they look the same.
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We start from the assumption that we are given a W 1,p
loc map u : R×S1 → R2n satisfying

∂su+ J(u)∂tu− J(u)XHt(u) = 0.

Set
J(s, t) := J(u(s, t)), f(s, t) := J(u(s, t))XH(u(s, t)).

Thus J ∈W 1,p
loc (R× S1, L(R2n)) and f ∈W 1,p

loc (R× S1,R2n). The first step is the following
lemma:

Lemma 4.17. Suppose U ⊂ Ω ⊂ R × S1 are open domains with compact closure, with
U ⊂ Ω. Suppose p > 2 and q, r > 0 with r > 1 are such that

1

p
+

1

q
=

1

r
. (4.8)

Suppose J ∈W 1,p(Ω, L(R2n)) satisfies J2 = −1 and

∥J∥W 1,p(Ω) ≤ c0.

Suppose f ∈ Lr
loc(Ω,R

2n). If u ∈ Lq
loc(Ω,R

2n) is a weak solution of the equation

∂su+ J∂tu = f (4.9)

then in fact u ∈ W 1,r
loc (Ω,R

2n). Moreover there exists a constant c = c(c0, U,Ω) > 0 such
that

∥u∥W 1,r(U) ≤ c
(
∥f∥Lr(Ω) + ∥u∥Lq(Ω)

)
.

Proof. We will use Lemma 4.14. We apply ∂s − J∂t to (4.9) to obtain

(∂s − J∂t)(∂s + J∂t)u = (∂s − J∂t)f,

which gives

∆u = J · ∂tJ · ∂tu− ∂sJ · ∂tu+ ∂sf − J · ∂tf
= J · ∂tJ · (J · ∂su− Jf)− ∂sJ · ∂tu+ ∂sf − J · ∂tf
(∗)
= −J2∂tJ · (∂su− f)− ∂sJ · ∂tu+ ∂sf − J · ∂tf
= −∂sJ · ∂tu− ∂tJ(f − ∂su) + ∂sf − J · ∂tf
(∗∗)
= ∂s(∂tJ · u+ f) + ∂t(−∂sJ · u− Jf),

where (∗) used the fact that ∂tJ ·J = −J ·∂tJ (differentiate J2 = 1 with respect to t), and
(∗∗) used the fact that ∂2stJ = ∂2tsJ (even as weak solutions!). Next, Hölder’s inequality
implies that both g := ∂tJ · u+ f and h := −∂sJ · u− Jf belong to Lr

loc(Ω):

∥g∥Lr(Ω) ≤ ∥∂tJ∥Lp(Ω) ∥u∥Lq(Ω)+∥f∥Lr(Ω) , ∥h∥Lr(Ω) ≤ ∥∂sJ∥Lp(Ω) ∥u∥Lq(Ω)+∥Jf∥Lr(Ω) ,

where we have used the fact that J is continuous as p > 2 (this is where we use (4.8)).
Thus by Lemma 4.14 we conclude that

∥u∥W 1,r(U) ≤ c1

(
∥∂tJ · u∥Lr(Ω) + ∥f∥Lr(Ω) + ∥∂sJ · u∥Lr(Ω) + ∥Jf∥Lr(Ω)

)
≤ c1

(
∥J∥W 1,p(Ω) ∥u∥Lq(Ω) + ∥f∥Lr(Ω) + ∥J∥W 1,p(Ω) ∥u∥Lq(Ω) + ∥J∥L∞(Ω) ∥f∥Lr(Ω)

)
≤ c1

(
2c0 ∥u∥Lq(Ω) + (1 + Lc0) ∥f∥Lr(Ω)

)
,

where L is a constant such that ∥·∥L∞ ≤ L ∥·∥W 1,p (such L exist since p > 2 and hence
W 1,p embeds compactly in L∞). This proves the lemma.
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Exercise 4.18. Check that Lemma 4.17 still holds if q = +∞, with r = p < +∞.

The following result completes the proof of Theorem 4.11. Next we prove the following
result:

Theorem 4.19. Suppose k ≥ 1 and p > 2. Suppose J ∈ W k,p
loc (R × S1, L(R2n)) satisfies

J2 = −1 and f ∈ W k,p
loc (R × S1,R2n). If u ∈ Lp

loc(R × S1,R2n) is a weak solution of the
equation

∂su+ J∂tu = f

then u ∈ W k+1,p
loc (R × S1,R2n). Moreover if U ⊂ Ω ⊂ R × S1 are open domains with

compact closure, with U ⊂ Ω, and

∥J∥Wk,p(Ω) ≤ c0,

then there exists a constant c = c(p, n, k, c0, U,Ω) > 0 such that for every 0 ≤ j ≤ k − 1
one has

∥u∥W j+1,p(U) ≤ c
(
∥f∥W j,p(U) + ∥u∥W j,p(U)

)
.

Proof. Let us begin with the case k = 1. Our goal therefore is to show that u ∈W 2,p
loc (R×

S1,R2n). As before we apply ∂s − J∂t to discover that

∆u+ ∂sJ · u− J · ∂tJ · u− ∂sf + J · ∂tf = 0.

Our first goal is to show that u ∈ W 1,p
loc (R × S1,R2n). If we could show that u ∈ L∞(R ×

S1,R2n) then we coudl apply Lemma 4.14 with r = p and q = +∞ (c.f. Exercise 4.18).
Unfortunately we do not yet know this is the case. So we first show that u ∈ W 1,r

loc (R ×
S1,R2n) for some r > 2. Then by the Sobolev Embedding Theorem u ∈ L∞(R× S1,R2n).

Unfortunately one cannot simply apply Lemma 4.14, since ∂sJ ·u only belongs to Lp/2
loc ,

and so unless p > 4 we cannot use Lemma 4.14 to deduce that u ∈ W 1,r
loc (R × S1,R2n)

for some r > 2. Instead, the idea is to successively apply Lemma 4.17 for a clever set of
choice of triples (pk, qk, rk) satisfying pk > 2, rk > 1 and 1/pk + 1/qk + 1/rk = 1.

Claim: There exists a finite sequence of tuples (pk, qk, rk), for 0 ≤ k ≤ l + 1, such
that:

• p0 = q0 = p, ,

• 1 < r0 < r1 < · · · < rl < 2 < rl+1 < p,

• for 1 ≤ k ≤ l + 1, qk =
2rk−1

2−rk−1
.

To prove the existence of such a sequence one chooses 1 < r0 < p/2 and defines inductively

rk+1 =
2prk

2p+ 2rk − prk
.

If rk < 2 then rk+1 > rk. If rk < 2 for all k then the sequence would converge to a limit
r∞ ≤ 2, which contradicts the recurrence relation. Thus there exists a finite l such that
rl < 2 < rl+1.

Now choose a sequence of open domains

U ⊂ Ul+1 ⊂ Uk ⊂ · · · ⊂ U0 ⊂ Ω,
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such that at each stage one has Uk+1 compact and Uk+1 ⊂ Uk. The Sobolev Embedding
Theorem tells us that

Lp(Uk−1) ⊂ Lrk(Uk−1),

W 1,rk−1(Uk−1) ⊂ Lqk(Uk−1)

(this was the reason for requiring qk =
2rk−1

2−rk−1
!). Moreover there exists a constant bk such

that
∥·∥Lqk (Uk−1)

≤ bk ∥·∥W 1,rk−1 (Uk−1)
.

So now let us apply Lemma 4.17 with (p0, q0, r0, U0). This tells us that u ∈W 1,r0(U0),
and moreover that there exists a constant k0 such that

∥u∥W 1,r0 (U0)
≤ a0

(
∥f∥Lp(Ω) + ∥u∥Lp(Ω)

)
.

Now apply Lemma 4.17 with (p1, q1, r1, U1). We see that u ∈W 1,r1(U1) and obtain

∥u∥W 1,r1 (U1)
≤ a1

(
∥f∥Lr1 (U0)

+ ∥u∥Lq1 (U0)

)
≤ a1b1

(
∥f∥Lp(Ω) + ∥u∥W 1,r0 (U0)

)
.

Now we repeatedly apply Lemma 4.17 another l times to see that u ∈W 1,rl+1(Uk+1) and
moreover that

∥u∥W 1,rl+1 (Ul+1)
≤ a

(
∥f∥Lp(U) + ∥u∥W 1,rl+1 (Ul+1)

)
.

But now we are finally in good shape! Since rl+1 >2, one has W 1,rl+1(Ul+1) ⊂ L∞(Ul+1),
and hence we now know that u ∈ L∞(Ul+1). Now we apply Lemma 4.17 one more time
with (p,+∞, p, Ul+1) to deduce that u ∈ W 1,p(U) and that there exists a constant c > 0
such that

∥u∥W 1,p(U) ≤ c
(
∥f∥Lp(U) + ∥u∥Lp(U)

)
.

This game is called elliptic bootstrapping. We are not done yet though! The next step is
to show that actually u ∈W 2,p(U). For this one plays exactly the same game again with
v = ∂su and w = ∂tu. One has

∂sv + J∂tv − g = 0,

where
g = ∂sf − ∂sJ · ∂tu.

Unfortunately we are even worse off than before, since g is only in L
p/2
loc (R × S1,R2n).

Nevertheless by applying Lemma 4.17 with p = q and r = p/2 we see that v ∈W
1,p/2
loc (R×

S1,R2n), and hence in Lq1
loc(R × S1,R2n), where q1 = 2r/2 − r. Similarly w ∈ Lq1

loc(R ×
S1,R2n). Thus if r1 is defined by 1/p+1/q1 = 1/r1 then we see that g ∈ Lr1

loc(R×S1,R2n).
Now we can repeat the arguments given above to show that both v and w belong to
W 1,p(R × S1,R2n).

We have now finally proved the case k = 1 of Theorem 4.19. One now argues induc-
tively, as the following two exercises show.

Exercise 4.20. Prove that if p > 2 and k ≥ 1 then if f, g ∈ W k,p
loc (R × S1,R2n) then the

product fg also belongs to W k,p
loc (R × S1,R2n), and moreover if Ω ⊂ R × S1 is an open

domain with compact closure then there exists a constant c > 0 such that

∥fg∥Wk,p(Ω) ≤ c ∥f∥Wk,p(Ω) ∥g∥Wk,p(Ω) .

Exercise 4.21. Complete the proof of Theorem 4.19. Hint: You will need to use Exercise
4.20. See [AD10, p430-432] if you get stuck.

We have now completed the proof of Theorem 4.11.
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CHAPTER 5

Fredholm theory
The aim of this section is to prove that if u ∈ B1,p(x−, x+) satisfies ∂J,H(u) = 0 then
the vertical derivative Dv∂J,H(u) is a Fredholm operator. The first step is to choose a
symplectic trivialisation of the pullback bundle u∗TQ → R × S1. For this we use the
following lemma, which is an extension of the first part of Lemma 3.19.

Lemma 5.1. A symplectic vector bundle E → Σ over a compact Riemann surface Σ with
non-empty boundary ∂Σ admits a symplectic trivialisation. Moreover the restriction of
the symplectic trivialisation to any of the boundary circles is admissible in the sense of
Definition 3.18.

Exercise 5.2. Prove Lemma 5.1. Hint: Set k(Σ) := 2g(Σ) + #π0(∂Σ) and preceed by
induction over k(Σ). See [MS12, Proposition 2.66] if you get stuck.

Strictly speaking we cannot directly apply Lemma 5.1 to the symplectic bundle u∗TQ→
R×S1, since R×S1 is not a compact Riemann surface with non-empty boundary. However
since we already know that u is a smooth map, we can employ the following trick.

Denote by R = [−∞,+∞] the compactification of R, equipped with the structure
of a compact bounded manifold by the requirement that s 7→ s(1 + s2)−1/2 defines a
diffeomorphism from R to [−1, 1].

Exercise 5.3. Suppose u ∈ B1,p(x−, x+)∩C∞(R×S1, Q). Show that u extends to define
a smooth map u : R × S1 → Q satisfying u(±∞, t) = x±(t).

Thus applying Lemma 5.1 to the compactified map u, we obtain a symplectic triviali-
sation

Φ : R × S1 → u∗TQ

with the property that Φ := Φ|R×S1 defines a symplectic trivialisation of u∗TQ, and
Φ± := Φ|{±∞}×S1 defines an admissible symplectic trivialisation of the asymptotic bundles
(x±)∗TQ → S1. As in the proof of Lemma 3.20 we now consider the smooth family
S : R × S1 → L(R2n) of matrices defined by and let

S(s, t) := Φ−1
s,t ◦ (∇sΦ+ J(∇tΦ−∇ΦXHt(u)) . (5.1)

The limit matrices

S±(t) := lim
s→±∞

S(s, t) = (Φ±
t )

−1 ◦ J(∇tΦ
± −∇Φ±XHt(x

±)

are symmetric (cf. the proof of Lemma 3.20). Since Φs,t : R2n → Tu(s,t)Q is an isomorphism
for each (s, t) ∈ R × S1, we obtain that:

Lemma 5.4. The operator D∂J,H(u) : W 1,p(R × S1, u∗TQ) → Lp(R × S1, u∗TQ) is
Fredholm if and only if the operator DS :W 1,p(R×S1,R2n) → Lp(R×S1,R2n) defined as
usual by

DSu = ∂su+ J0∂tu+ Su

is Fredholm. Moreover
indD∂J,H(u) = indDS .

Exercise 5.5. Prove Lemma 5.4.
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The main result of this section is the following result:

Theorem 5.6. Fix 1 < p < +∞ and suppose S : R× S1 → L(R2n) is a smooth map such
that the limits S±(t) := lims→±∞ S(s, t) exist and the convergence is uniform in t. Let

DS :W 1,p(R × S1,R2n) → Lp(R × S1,R2n)

denote the perturbed Cauchy-Riemann operator

DSu := ∂su+ J0∂tu+ Su.

Suppose that the limit operators S± are symmetric matrices for each t ∈ S1, and moreover
suppose that they are non-degenerate in the sense that the fundamental solutions Ψ± :
[0, 1] → Sp(R2n, ω0) of S± (i.e. the solutions of the equation

(Ψ±)′(t) = J0 · S±(t) ·Ψ±(t), Ψ±(0) = 1,

cf. Lemma 3.16) satisfy det(Ψ±(1)− 1) ̸= 0. Then the operator DS is Fredholm.

Later on in Theorem 6.21 we will compute the index of DS , but for now we will content
ourselves with showing only that DS is Fredholm. The proof consists of two steps. In the
first step we show that if S(s, t) does not depend on s, then the operator DS is not only
Fredholm but is in fact an isomorphism.

Theorem 5.7. Fix 1 < p < +∞ and suppose S : S1 → Sym(R2n). Let

DS :W 1,p(R × S1,R2n) → Lp(R × S1,R2n)

denote the perturbed Cauchy-Riemann operator

DSu := ∂su+ J0∂tu+ Su.

Assume that S is non-degenerate. Then the operator DS is invertible.

We will first prove Theorem 5.7 in the case p = 2. The proof will require the following
classical result, which is a special case of the Hille-Yosida theorem (see for instance [Rud91,
Theorem 13.37]).

Theorem 5.8. Let H be a Hilbert space and A an unbounded self-adjoint linear operator.
Assume that specA ⊂ (−∞, κ] for some κ ∈ R. Then there exists a family of bounded
operators EA(s) : s ∈ [0,+∞) such that:

1. lims↓0EA(s)x = x for all x ∈ H,

2. EA(s+ t) = EA(s) ◦ EA(t) for all s, t ≥ 0,

3. EA(s)(H) ⊂ domA for every s > 0,

4. the map s 7→ EA(s) belongs to C∞([0,+∞), L(H)),

5. d
dsEA(s) = A ◦ EA(s),

6. ∥EA(s)∥L(H) ≤ eκs for all s ≥ 0.

One often writes EA(s) = exp(sA).
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In order to prove Theorem 5.7 in the case p = 2, let us set

H := L2((0, 1),R2n), W :=W 1,2(S1,R2n).

Then

L2(R × S1,R2n) = L2(R,H), W 1,2(R × S1,R2n) =W 1,2(R,H) ∩ L2(R,W),

where the norm of the intersection of two spaces is by definition the sum of the two norms.
Now consider the unbounded linear operator A on H with dense domain W given by

A = J0∂t + S.

(thus A was denoted by σS in Lemma 3.16). In fact, as claimed in Lemma 3.16, A
is symmetric. To see this one computes using integration by parts and the fact that
J∗
0 = −J0 that:

⟨Au, v⟩H =

ˆ 1

0
(J0u

′ + Su) · v =

ˆ 1

0
u · (J0v′ + Sv)dt = ⟨u,Av⟩H .

Next, we claim that the assertion that S is non-degenerate implies that A has a bounded
inverse. In other words, given v ∈ H we must find a unique u ∈ W such that Au = v.
Let Ψ denote the fundamental solution S, so that Ψ′ = J0SΨ. Then if Au = v then
u′ = J0Su−J0v, and hence given ξ ∈ R2n, the solution uξ of Auξ = v satisfying uξ(0) = ξ
is given by

uξ(t) = Ψ(t)

(
ξ −
ˆ t

0
Ψ(s)−1J0v(s)ds

)
, for all ξ ∈ R2n.

One has uξ ∈ W if and only if uξ(1) = 1, which is the case if and only if

(Ψ(1)− 1)ξ = Ψ(1)

ˆ 1

0
Ψ(s)−1J0v(s)ds.

Thus the inverse A−1 : H → H is the compact operator

A−1v(t) := Ψ(t)

(
(Ψ(1)− 1)−1Ψ(1)

ˆ 1

0
Ψ(s)−1J0v(s)ds−

ˆ t

0
Ψ(s)−1J0v(s)ds

)
.

Since A is symmetric and invertible, A is self adjoint. So its spectrum is real, and by the
spectral theorem we can decompose H = H+⊕H− in the positive and negative eigenspaces
of A. Thus if

A± := A|H±∩W

then A±are self-adjoint unbounded linear operators with domain domA± = H± ∩ W.
Moreover there exists κ > 0 such that specA+ ⊂ [κ,+∞) and specA− ⊂ (−∞,−κ].
Thus by Theorem 5.8 the operators −A+ and A− generate families E−A+(s), EA−(s) ∈
L(H±). Let P± : H → H±denote the orthogonal projections onto H± and consider the
discontinuous path of bounded linear operators given by

G(s) :=

{
E−A+(s)P+, s ≥ 0,

−EA−(−s)−P−, s < 0.

Then
∥G∥L(H) ≤ e−κ|s|, (5.2)
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and we can define the operator

ΓS : L2(R,H) →W 1,2(R,H) ∩ L2(R,W)

by

Γsv(s) :=

ˆ
R
G(s− τ)v(τ)dτ =

ˆ
R
G(−s)v(s+ τ)dτ.

This is well defined due to the following estimate:

ˆ
R
∥G(−s)v(s+ τ)∥L2(R×S1) dτ =

ˆ
R

(ˆ
R
∥G(−τ)v(s+ τ)∥2L2(S1) ds

)1/2

dτ

≤
ˆ

R

(ˆ
R
e−2κ|τ | ∥v(s+ τ)∥2L2(S1) ds

)1/2

dτ

=

ˆ
R
e−2κ|τ | ∥v∥L2(R×S1) dτ < +∞.

We claim that ΓS is the inverse of DS . Indeed, if v ∈ L2(R,H) and ΓSv = w then write

w = w+ + w−,

where

w+(s) =

ˆ s

−∞
E−A+(s− τ)P+v(τ)dτ, w−(s) = −

ˆ +∞

s
EA−(τ − s)P−v(τ)dτ.

Then

d

ds
w+(s) = P+v(s)−A+

ˆ s

−∞
E−A+(s− τ)P+v(τ)dτ = P+v(s)−A+w+(s),

and similarly
d

ds
w−(s) = P−v(s)−A−w−(s),

and hene dw
ds = v − Aw, so that DSΓSv = v. Similarly ΓSDSu = u for every u ∈

W 1,2(R,H) ∩ L2(R,W). Thus DS is invertible. This proves Theorem 5.7 for the case
p = 2. We now prove the general case.

Proof. (of Theorem 5.7).
Suppose p > 2. We first show there exists a constant c > 0 such that

∥u∥W 1,p([k,k+1]×S1) ≤ c
(
∥DSu∥LP ([k−1,k+2]×S1) + ∥u∥L2([k−1,k+2]×S1)

)
. (5.3)

To prove (5.3) we first note that there exists a constant c1 > 0 such that

∥u∥W 1,p([k,k+1]×S1) ≤ c
(
∥DSu∥LP ([k−1/2,k+3/2]×S1) + ∥u∥L2([k−1,/2k+3/2]×S1)

)
(see the proof of part (2) of Theorem (4.12)). Since W 1,2 embeds continuously into Lp for
every p ∈ [1,+∞), there exists c2 > 0 such that

∥u∥Lp([k−1/2,k+3/2]×S1) ≤ c2

(
∥u∥W 1,2([k−1/2,k+3/2]×S1)

)
.

42



Then the first estimate but for p = 2 gives a constant c3 > 0 such that

∥u∥W 1,2([k−1/2,k+3/2]×S1) ≤ c3

(∥∥∥∥DSu∥L2([k−1,k+2]×S1) + ∥u∥L2([k−1,k+2]×S1)

∥∥∥)
≤ c4

(∥∥∥∥DSu∥Lp([k−1,k+2]×S1) + ∥u∥L2([k−1,k+2]×S1)

∥∥∥) ,
since p > 2. Putting this together we deduce an estimate of the form (5.3).

Next, we claim that there exist constants a, b > 0 such that if u ∈W 1,2 and DSu ∈ Lp

then u ∈W 1,p and
∥u∥Lp(R,H) ≤ a ∥DSu∥Lp(R×S1) , (5.4)

∥u∥W 1,p(R×S1) ≤ b
(
∥DSu∥Lp(R×S1) + ∥u∥Lp(R,H)

)
. (5.5)

To see this we first note that by assumption v := DSu belongs to L2(R,H) and satisfies

∥v∥Lp(R,H) =

(ˆ
R
∥v∥pH ds

)1/2

=

(ˆ
R

(ˆ
S1

|v|2 dt
)p/2

ds

)1/2

≤ ∥v∥Lp(R×S1) ,

and hence v also belongs to Lp(R,H). Since u ∈W 1,2, from above we know that u = ΓSv,
and hence by Young’s inequality and (5.2) we obtain

∥u∥Lp(R,H) = ∥ΓSv∥Lp(R,H) = ∥G ∗ v∥Lp(R,H) ≤ ∥G∥L1(R,L(H)) ∥v∥Lp(R,H) ≤
2

κ
∥v∥Lp(R,H) .

Combined with the previous inequality, this proves (5.4). Now to prove (5.5), since W 1,2

embeds into Lp
loc, both u and ∂u = DSu− Su belong to Lp

loc. Thus by elliptic regularity,
u ∈W 1,p

loc . Using (5.3) we see that

∥u∥L1,p([k,k+1]×S1) ≤ c

(ˆ k+1

k−1

ˆ
S1

|DSu|p dtds+
(ˆ k+2

k−1

ˆ
S1

|u|2 dsds
)p/2

)

≤ c1

ˆ k+2

k−1

(ˆ
S1

|DSu|p dt+
(ˆ

S1

|u|2 dt
)p/2

)
ds.

Summing over k we obtain (5.5).
Combining (5.4) and (5.5) together we see that if u ∈ C∞

c then there exists a constant
c > 0 such that

∥u∥W 1,p(R×S1) ≤ c ∥DSu∥Lp(R×S1) ,

and by density this actually holds for all u ∈ W 1,p. Thus the map DS ∈ L(W 1,p, Lp)
is injective and has closed range. If v ∈ Lp ∩ L2 then since we already know the result
for p = 2 there exists u ∈ W 1,p such that DSu = v. But then from the above we know
that this implies u ∈ W 1,p. Thus DS(W

1,p) contains the dense subspace Lp ∩ L2. Since
DS(W

1,p) is closed in Lp we see that DS(W
1,p) = Lp, and thus DS is also surjective.

Exercise 5.9. Use a duality argument to complete the proof of Theorem 5.7 in the case
where 1 < p < 2. Hint: See [AD10, Proposition 8.7.15] if you get stuck.

We now move onto proving the main result of this section, Theorem 5.6. In order to
do so we first recall some more standard facts about Fredholm operators.

Let X and Y denote real Banach spaces. Let L(X,Y ) denote the set of continuous
linear maps and Lc(X,Y ) the subspace of compact operators. We say that T ∈ L(X,Y )
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is semi-Fredholm if ranT is a closed subspace of Y and at least one of ker T and cokerT
are finite dimensional. If T is semi-Fredholm then it still makes sense to define the index
of T to be

indT := dim ker T − dim cokerT ∈ Z ∪ {±∞}.

Thus a Fredholm operator is precisely a semi-Fredholm with finite Fredholm index. We
will need the following result, which can be found in [Kat76, Section IV.5].

Proposition 5.10. The set of semi-Fredholm operators is open in L(X,Y ), and the index
is a continuous function. If T is semi-Fredholm and K ∈ Lc(X,Y ) then T + K is semi-
Fredholm of the same index.

We will also need the following simple lemma.

Lemma 5.11. Suppose X,Y, Z are Banach spaces and T ∈ L(X,Y ) and K ∈ L(X,Z). If
there exists a number c > 0 such that

∥x∥X ≤ c (∥Tx∥Y + ∥Kx∥Z) , for all x ∈ X, (5.6)

then T has finite dimensional kernel and closed range, and hence is a semi-Fredholm
operator with index indT ∈ Z ∪ {−∞}.

Proof. We show that ker T ∩BX is compact, where BX is the ball of radius 1 in X. This
implies ker T is finite dimensional. If (xk) ⊂ ker T ∩ BX then since K is compact, up to
a subsequence we may assume (Kxk) is convergent, and hence Cauchy. Feeding this into
(5.6) we see that

∥xh − xk∥X ≤ c ∥Kxh −Kxk∥Z → 0.

Thus (xk) is Cauchy in X, and hence converges up to a subsequence.
It remains to show that ranT is closed. Since ker T is finite dimensional, by the

Hahn-Banach theorem there exists a topological complement X0 ⊂ X of ker T (i.e. X0

is a closed subspace such that X = X0 ⊕ ker T , X0 ∩ ker T = (0)). Suppose y ∈ ranT .
Then by definition there exists (xk) ⊂ X0 such that Txk → y. We claim that ∥xk∥X is
bounded. If not then passing to a subsequence we may assume that ∥xk∥X → +∞. Set
x′k := xk/ ∥xk∥X ∈ X0 ∩ BX . Then Tx′k → 0 and Kx′k converges in Z (up to another
subsequence). Feeding this into (5.6) again, we see that∥∥x′h − x′k

∥∥
X

≤ c
(∥∥Tx′h − Tx′k

∥∥
Y
+
∥∥Kx′h −Kx′k

∥∥
Z

)
→ 0.

Thus x′k → x′ ∈ X0 ∩ BX (since X0 is closed). But also x′ ∈ ker T , contradicting
X0 ∩ ker T = (0).

Thus (xk) is bounded. As before, this implies that up to a subsequence (Kxk) is
convergent, and hence feeding this one more time into (5.6) shows that (xk) is Cauchy.
Thus xk → x with Tx = y. Thus y ∈ ranT and so ranT is closed as claimed.

Let us now prove Theorem 5.6.

Proof. Given σ ≥ 0 define

S+
σ (s, t) :=

{
S(s, t), s ≥ σ,

S(σ, t), s < σ,

and

S−
σ (s, t) :=

{
S(−σ, t), s > −σ,
S(s, t), s ≤ −σ.

44



Then ∥∥∥DS±
σ
−DS±

∥∥∥
L(W 1,p,Lp)

≤
∥∥S±

σ − S±∥∥
L∞ → 0,

and hence as the set of invertible linear operators is open in L(W 1,p, Lp), there exists σ > 0
such that DS±

σ
is invertible. Thus there exists c1 > 0 such that

∥u∥W 1,p(R×S1) ≤ c1

∥∥∥DS±
σ
u
∥∥∥
Lp(R×S1)

.

Thus if u ∈W 1,p(R × S1) is supported in (R\[−σ − 1, σ + 1])× S1 then

∥u∥W 1,p(R×S1) ≤ c1 ∥DSu∥Lp(R×S1) . (5.7)

Now select a smooth function β : R → [0, 1] such that β(s) = 1 for |s| ≤ σ+1 and β(s) = 0
for |s| ≥ σ+2. As in the proof of Theorem 4.12, we write u = βu+(1−β)u and estimate:

∥u∥W 1,p(R×S1) ≤ ∥βu∥W 1,p(R×S1) + ∥(1− β)u∥W 1,p(R×S1) .

We estimate the first term using (4.7) to obtain:

∥βu∥W 1,p(R×S1) ≤ c2

(
∥DS(βu)∥Lp(R×S1) + ∥βu∥Lp(R×S1)

)
≤ c3

(
∥DSu∥Lp(R×S1) + ∥u∥Lp([−σ−2,σ+2]×S1)

)
.

Using (5.7) we estimate the second term by

∥(1− β)u∥W 1,p(R×S1) ≤ c1 ∥DS(1− β)u∥Lp(R×S1)

= c1
∥∥DSu− β′u

∥∥
Lp(R×S1)

≤ c ∥DSu∥Lp(R×S1) + c4 ∥u∥Lp([−σ−2,σ+2]×S1) .

Combining these two estimates we see that there exists a constant c0 > 0 such that

∥u∥W 1,p(R×S1) ≤ c0

(
∥DSu∥Lp(R×S1) + ∥u∥Lp([−σ−2,σ+2]×S1)

)
, for all u ∈W 1,p(R × S1).

Now we apply Lemma 5.11 with X = W 1,p(R × S1), Y = Lp(R × S1) and Z = Lp([−σ −
2, σ + 2]× S1), with T = DS and K the restriction operator

W 1,p(R × S1,R2n) → Lp([−σ − 2, σ + 2]× S1,R2n).

By Rellich’s compactness theorem, K is indeed a compact operator. Thus Lemma 5.11
implies that DS has finite dimensional kernel and closed range. To complete the proof we
must show that the range of DS has finite codimension in Lp. Equivalently, letting q > 1
be such that 1/p+ 1/q = 1, we must show that the annhilator

(ranDS)
◦ :=

{
v ∈ Lp(R × S1) |

ˆ
R×S1

DSu · vdsdt = 0, for all u ∈W 1,p(R × S1)

}
is finite dimensional. But if v ∈ (ranDS)

◦ then v is a weak solution to the equation
∂v = S∗v, and hence by Theorem 4.12, v is actually a strong solution. Thus

(ranDS)
◦ ⊂ ker D−S∗ .

But the operator D−S∗ is of the same form as DS (i.e. −S∗ has the same properties as
DS). So from what we already know, ker D−S∗ is finite dimensional. Thus the same is
true of (ranDS)

◦. This completes the proof of Theorem 5.6.
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Exercise 5.12. Show that actually one has equality

(ranDS)
◦ = ker D−S∗ .

The aim now is to compute the Fredholm index of the operator DS : W 1,p(R ×
S1,R2n) → Lp(R × S1,R2n). This will take some time, and will not be completed un-
til the next section. Firstly, we note that in order to compute the index it suffices to work
with in the case p = 2.

Lemma 5.13. The index of DS is independent of the choice of 1 < p < +∞.

Proof. We know from elliptic regularity that if u ∈ ker DS then u is smooth. In particular,
dim ker DS does not depend on the choice of p. Moreover from Exercise 5.12 we know
that cokerDS

∼= ker D−S∗ , and hence dim cokerDS = dim ker D−S∗ also does not depend
on p.

Next, we prove that the index of DS only depends on the asymptotes S±(t) :=
lims→±∞ S(s, ·), which are by assumption symmetric matrices such that the fundamental
solutions Ψ± from (??) are such that det(Ψ±(1) − 1) ̸= 0. Fix two paths S± : S1 →
Sym(R2n) with the property that if Ψ± : [0, 1] → Sp(R2n, ω0) are defined by

(Ψ±)′(t) = J0S(t)Ψ(t), Ψ±(0) = 1,

then
det(Ψ±(1)− 1) ̸= 0.

Let F(S−, S+) denote the set of all operators DS : W 1,2(R × S1,R2n) → L2(R × S1,R2n)
of the form

DS = ∂s + J0∂t + S(s, t),

where S ∈ C∞(R×S1, L(R2n))∩L∞(R×S1, L(R2n)) is a smooth map such that lims→±∞ S(s, t) =
S±(t), uniformly in t. Thus every DS ∈ F(S−, S+) is Fredholm.

Proposition 5.14. The space F(S−, S+) is contractible. Thus the index ofDS is constant
on F(S−, S+):

indDS1 = indDS2 , for all DS1 , DS2 ∈ F(S−, S+).

Proof. Fix DS0 ∈ F(S−, S+). Define a map Θ : [0, 1]×F(S−, S+) → F(S−, S+) by

Θ(r,DS) := ∂s + J0∂t + τS0 + (1− τ)S.

Thus Θ(0, ·) = 1 and Θ(1, DS) = DS0 for all DS ∈ F(S−, S+). To complete the proof we
must show that Θ is continuous. Let (uk) ∈ W 1,2(R × S1,R2n) with ∥uk∥W 1,2(R×S1) = 1.
Suppose rk → r and DSk

→ DS in the space L(W 1,2(R × S1,R2n), L2(R × S1,R2n)). We
must show that

∥Θ(rk, DSk
)uk −Θ(r,DS)uk∥L2(R×S1) → 0.

Since DSk
→ DS one has ∥Sk − S∥op → 0 and thus

∥Θ(rk, DSk
)uk −Θ(r,DS)uk∥L2(R×S1) = ∥((1− rk)Sk + rkS0 − (1− r)Sk + rS)uk∥L2(R×S1)

≤ 2 ∥Sk − S∥op ∥uk∥W 1,2(R×S1) → 0.

46



The main result of this section is the following result, which is due to Floer and Hofer
[FH93, Proposition 9] and Schwarz [Sch95, Theorem 3.2.12], and states that the Fredholm
index is additive.

Theorem 5.15 (Additivity of index). Suppose S−, S0, S+ are three paths S1 → Sym(R2n)
whose fundamental solutions Ψ−,Ψ0,Ψ+ : [0, 1] → Sp(R2n, ω0) are all non-degenerate.
Suppose DR ∈ F(S−, S0),DS ∈ F(S0, S+) and DT ∈ F(S−, S+). Then

indDT = indDR + indDS .

This will take quite a while to prove.

Definition 5.16. We say that DS ∈ F(S−, S+) is asymptotically constant if there exists
s0 ≥ 0 such that

S(s, t) =

{
S−(t), s ≥ s0,

S+(t), s ≤ −s0.

Given DS ∈ F(S−, S+) and a real number ρ ∈ R, we define DSρ ∈ F(S−, S+) by
setting

Sρ(s, t) := S(s+ ρ, t).

Note that if DS is asymptotically constant then so is DSρ for all ρ ∈ R. We now introduce
a ‘gluing’ operation.

Definition 5.17. Suppose S−, S0, S+ are three paths S1 → Sym(R2n) whose funda-
mental solutions Ψ−,Ψ0,Ψ+ : [0, 1] → Sp(R2n, ω0) are all non-degenerate. Suppose
DR ∈ F(S−, S0) and DS ∈ F(S0, S+) are both asymptotically constant. Choose ρ0 > 0
large enough so that

Rρ0(s, t) = S0(t), for all (s, t) ∈ [−1,+∞)× S1,

S−ρ0(s, t) = S0(t), for all (s, t) ∈ (−∞, 1]× S1.

Then for ρ ≥ ρ0 there is a well defined asymptotically constant operator DTρ ∈ F(S−, S+)

defined by DTρ = ∂ + Tρ, where

Tρ(s, t) =

{
Rρ(s, t), (s, t) ∈ (−∞, 0]× S1,

S−ρ(s, t), (s, t) ∈ [0,+∞)× S1.

In particular,
Tρ(s, t) = S0(t), for all (s, t) ∈ [−ρ, ρ]× S1. (5.8)

Theorem 5.15 follows from the next result and Proposition 5.14

Theorem 5.18. One has
indDTρ = indDR + indDS .

The proof will take some time. We now introduce a stabilisation trick which allows us
to reduce to the case of surjective operators.

Definition 5.19. Suppose F : Rp → L2(R × S1,R2n) is a smooth linear map. Define
DF

S :W 1,2(R × S1,R2n)× Rp → L2(R × S1,R2n) by

DF
S (u, x) := DSu+ F (x).
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Note that if ei : i = 1, . . . , p and e′j : j = 1, . . . , q are the standard bases of Rp and Rq

then F is equivalent to a p-tuple (f1, . . . , fp) of functions belonging to L2(R × S1,R2n):

F (x) =

p∑
i=1

xifi, x =

p∑
i=1

xiei.

In particular, if we choose the fi such that cokerDS is contained in the space of the fi then
the operator DF

S is surjective. This can be done whenever dim cokerDS ≤ p. Moreover,
since the set of surjective operators is open, whenever dim cokerDS ≤ p we can always
choose F : Rp → L2(R × S1,R2n) with the property that

supp(F (x)) ⊂ [−R,R]× S1, for all x ∈ Rp. (5.9)

Exercise 5.20. Prove this last assertion.

Definition 5.21. Given u ∈ L2(R × S1,R2n), and ρ ∈ R, we define

uρ(s, t) := u(s+ ρ, t).

We now define an operator

Lρ := D
Fρ+F−ρ

Tρ
:W 1,2(R × S1,R2n)× R2p → L2(R × S1,R2n)

given by
Lρ(u, x, y) := DTρu+ F (x)ρ + F (y)−ρ.

Thus

Lρ(u, x, y)(s, t) =

{
∂u(s, t) +R(s+ ρ, t)u(s, t) + F (x)(s+ ρ, t) + F (y)(s− ρ, t), s ≤ 0,

∂u(s, t) + S(s− ρ, t)u(s, t) + F (x)(s+ ρ, t) + F (y)(s− ρ, t) s ≥ 0.

The main step in the forthcoming proof is the following statement:

Proposition 5.22. Suppose DF
R and DF

S are both surjective and that F satisfies (5.9).
Then for all ρ≫ 0, the operator Lρ is also surjective. Moreover for all ρ≫ 0, if πρ denotes
the L2-projection onto ker Lρ then the map

ϕρ : ker DF
R × ker DF

S → ker Lρ,

ϕρ((u, x), (v, y)) := πρ((uρ + v−ρ, x, y)) (5.10)

is an isomorphism.

Before proving Proposition 5.22, let us see how this result implies Theorem 5.18.

Proof. (Of Theorem 5.18)
Consider the exact sequence of finite dimensional vector spaces:

0 → ker DR
a→ ker DF

R
b→ Rp c→ cokerDR → 0,

where a(u) := (u, 0), b(u, x) := x and c(x) := DF
R(0, x) + ranDR. It is clear that a is

injective, ker b = im a and ker c = im b, and finally c is surjective as by assumption DF
R is

surjective. Exactness implies that

dim ker DR + p = dim ker DF
R + dim cokerDR,
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and hence we deduce that
indDR = dim ker DF

R − p.

Applying the same logic to DTρ and DS (since by assumption they are both surjective),
we obtain

indDTρ = dim ker Lρ − 2p

(∗)
= dim ker DF

R + dim ker DF
S − 2p

= indDR + indDS ,

where (∗) used the fact that ϕρ is an isomorphism.

We now move on to proving Proposition 5.22. In fact, we will prove only half of the
result: we will proof that ϕρ is surjective for all ρ≫ 0.

Proof. (that the map ϕρ from (5.10) is surjective for all ρ≫ 0)
It suffices to show that there exists a constant ρ1 ≥ ρ0 + 1 + R and a constant c > 0

such that for all ρ ≥ ρ1 one has

∥Lρ(u, x, y)∥L2(R×S1)×R2p ≥ c
(
∥u∥L2(R×S1) + |x|2 + |y|2

)1/2
(5.11)

for all (u, x, y) ∈ Rρ, where Rρ denotes the set of tuples (u, x, y) ∈W 1,2(R×S1,R2n)×R2p

such that

⟨⟨u, vρ + w−ρ⟩⟩L2(R×S1) + ⟨x, a⟩+ ⟨y, b⟩ = 0, for all (v, a) ∈ ker DR, and (w, b) ∈ ker DS .

If (5.11) is false then we can find sequences (uk, xk, yk) ∈ W 1,2(R × S1,R2n) × R2p such
that

∥uk∥L2(R×S1) + |xk|2 + |yk|2 = 1, (5.12)

and a sequence ρk → +∞ such that

(uk, xk, yk) ∈ Rρk ,

∥Lρk(uk, xk, yk)∥L2(R×S1)×R2p → 0.

Define a smooth map ϑ : R → [0, 1] such that ϑ(s) = 1 for |s| ≤ 1/2 and ϑ(s) = 0 for
|s| ≥ 1. Given r > 0 let ϑr(s) := ϑ(s/r). Choose rk > 0 such that

1
2ρk < rk <

3
4ρk, (5.13)

and set
fk := ϑrkuk.

We claim that ∥fk∥W 1,2(R×S1) → 0. Here the key point is that since the operator S0 is
non-degenerate in the sense that Ψ0(1) does not have 1 as an eigenvalue, Theorem 5.7
implies that DS0 : W 1,2(R × S1,R2n) → L2(R × S1,R2n) is invertible. Thus it suffices to
show that ∥DS0fk∥L2(R×S1) → 0. Using (5.8), (5.12) and (5.13) we see that for k large
enough,

∥DS0fk∥L2(R×S1) ≤
1
rk

∥∥ϑ′(·)uk∥∥L2(R×S1)
+ ∥ϑ(·/rk)DS0uk∥L2(R×S1)

≤ c
rk

+ ∥Lρk(uk, xk, yk)∥L2(R×S1)×R2p → 0,
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where the last line used the fact that F (xk)ρk |L2((−rk,rk)×S1) = F (yk)−ρk |L2((−rk,rk)×S1) = 0
for k large enough due to (5.9). We conclude that

∥uk∥W 1,2((−ρk/4,ρk/4)×S1) → 0. (5.14)

Now choose a smooth function β− : R → [0, 1] such that β−(s) = 1 for s ≤ −1 and
β−(s) = 0 for s ≥ 0. Abbreviate

vk(s, t) := β−(s− ρk)uk(s− ρk, t).

We claim that (vk, xk) converges to some (v, x) ∈ ker DF
R . For this we compute∥∥DF

R(vk, xk)
∥∥
L2(R×S1)×Rp =

∥∥Lρk(β
−uk, xk, 0)

∥∥
L2(R×S1)×R2p

=
∥∥∥(β−)′uk + β−DTρk

uk + F (xk)ρk

∥∥∥
L2(R×S1)×R2p

≤ c ∥uk∥L2((−1,1)×S1) + ∥Lρk(uk, xk, yk)∥L2(R×S1)×R2p → 0,

where the last line used (5.14). Since (vk, xk) is bounded in W 1,2(R×S1,R2n)×Rp we see
that (up to a subsequence) (vk, xk) → (v, x) ∈ ker DF

R as claimed. Similarly by setting
β+(s) := β−(−s) and setting

wk(s, t) := β+(s+ ρk)uk(s+ ρk, t)

we see that (wk, yk) → (w, y) ∈ ker DF
S . From (5.12) we see that

∥v∥L2(R×S1) + ∥w∥L2(R×S1) + |x|2 + |y|2 = 1.

But now we obtain the desired contradiction by observing:

1 = ∥v∥L2(R×S1) + ∥w∥L2(R×S1) + |x|2 + |y|2

= lim
k→+∞

(⟨⟨
β−uk, vρk

⟩⟩
L2(R×S1)

+
⟨⟨
β+uk, w−ρk

⟩⟩
L2(R×S1)

+ ⟨x, xk⟩+ ⟨y, yk⟩
)

= lim
k→+∞

(
⟨⟨uk, vρk + w−ρk⟩⟩L2(R×S1) + ⟨x, xk⟩+ ⟨y, yk⟩

)
= lim

k→+∞
0 = 0,

since by assumption (uk, xk, yk) ∈ Rρk .

Exercise 5.23. Complete the proof of Proposition 5.22 by showing that Lρ is surjective
and ϕρ is injective for all ρ≫ 0. Hint: This is hard! See [Sch95, Section 3.2] for a detailed
proof.
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CHAPTER 6

Index computations
We now recall some properties of the symplectic linear group that we will need later.
Recall that

Sp(R2n, ω0) =
{
W ∈ L(R2n) |W ∗J0W = J0

}
.

This is a Lie subgroup of GL(R2n) and the Lie algebra is

sp(R2n, ω0) =
{
A ∈ L(R2n) | A∗J0 + J0A = 0

}
.

Equivalently, A ∈ sp(R2n, ω0) if and only if A = J0S for some symmetric matric S ∈
Sym(R2n). In particular, any continuously differentiable path Ψ : [0, 1] → Sp(R2n, ω0)
satisfying Ψ(0) = 1 can be (possibly after reparametrizing) written uniquely as

Ψ(t) = exp

(
J0

ˆ t

0
S(s)ds

)
(6.1)

for some path S : S1 → Sym(R2n), where exp : sp(R2n, ω0) → Sp(R2n, ω0) is the exponen-
tial map. Note that then Ψ satisfies

Ψ′(t) = J0S(t)Ψ(t).

Elementary linear algebra shows that any W ∈ Sp(R2n, ω0) can be written as

W = PO, (6.2)

where P is the positive symmetric symplectic matrix P = (WW ∗)1/2 and O is the orthog-
onal symplectic matrix O = (WW ∗)−1/2W . This shows that

Sp(R2n, ω0) ∼=
(
Sym+(R2n) ∩ Sp(R2n, ω0)

)
×
(
O(R2n) ∩ Sp(R2n, ω0)

)
.

Exercise 6.1. Show that Sym+(R2n) ∩ Sp(R2n, ω0) is homeomorphic to an n(n + 1) di-
mensional vector space. Show that if O ∈ O(R2n) ∩ Sp(R2n, ω0) then

O =

(
X −Y
Y X

)
(6.3)

for some pair X,Y ∈ L(R2n), and that the map

O 7→ X + iY

defines a homeomorphism

O(R2n) ∩ Sp(R2n, ω0) ∼= U(Cn).

Recall that π1(U(n)) ∼= Z, and the map det : U(Cn) → S1 induces an isomorphism
det∗ : π1(U(Cn)) → Z.

Definition 6.2. Define d̃et : Sp(R2n, ω0) → S1 by setting

d̃et(W ) := det(X + iY ),

where W = PO as in (6.2) and O =

(
X −Y
Y X

)
as in (6.3).
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We can now define an integer-valued function on the set of loops Φ : S1 → Sp(R2n, ω0).

Definition 6.3. Define the Maslov index of a loop Φ : S1 → Sp(R2n, ω0) by setting

µ(Φ) := degree
(
t 7→ d̃et(Φ(t))

)
∈ Z.

We now move on to defining the Conley-Zehnder index. Firstly let us write

Sp+(R2n, ω0) :=
{
W ∈ Sp(R2n, ω0) | det(1 −Ψ(1)) > 0

}
,

Sp0(R2n, ω0) :=
{
W ∈ Sp(R2n, ω0) | det(1 −Ψ(1)) = 0

}
,

Sp−(R2n, ω0) :=
{
W ∈ Sp(R2n, ω0) | det(1 −Ψ(1)) < 0

}
,

so that
Sp(R2n, ω0) = Sp−(R2n, ω0) ⊔ Sp0(R2n, ω0) ⊔ Sp−(R2n, ω0).

Exercise 6.4. Show that Sp±(R2n, ω0) are both path connected, and that any closed
loop contained in either Sp+(R2n, ω0) or Sp−(R2n, ω0) is contractible. Hint: Look at
[SZ92, Lemma 3.2] if you get stuck.

Definition 6.5. Let S∗(2n) ⊂ C0([0, 1], Sp(R2n, ω0)) denote the set of continuous paths
satisfying

Ψ(0) = 1, Ψ(1) /∈ Sp0(R2n, ω0),

endowed with the compact-open topology.

Our goal in what follows is to find a way to classify the connected components of
S∗(2n). This is useful because of the following exercise.

Exercise 6.6. Improve Proposition 5.14 to show that the index of an operator DS ∈
F(S−, S+) only depends on the connected components of S∗(2n) that the paths Ψ± belong
to, where as usual Ψ± are uniquely defined by Ψ± = exp

(
J0
´ t
0 S(s)ds

)
(cf. (6.1)).

The Conley-Zehnder index will be defined as a map

CZ : S∗(2n) → Z.

Before defining it, let us first list its main properties. (the precise definition is for the
moment less important). The Conley-Zehnder index was originally defined by Conley and
Zehnder (surprise!) in [CZ84]. It was futher studied by Salamon-Zehnder [SZ92] and
Robbin-Salamon2 [RS93, RS95]. The following result comes from [SZ92].

Theorem 6.7 (Properties of the Conley-Zehnder index). The Conley-Zehnder index CZ :
S∗(2n) → Z satisfies:

1. CZ(Ψ0) = CZ(Ψ1) if and only if Ψ0 and Ψ1 lie in the same connected component of
S∗(2n). Thus π0(S∗(2n)) ∼= Z, with CZ : S∗(2n) → Z furnishing an isomorphism.

2. If Ψ ∈ S∗(2n) and Φ : S1 → Sp(R2n, ω0) is a loop, then ΦΨ also belongs to S∗(2n)
and one has

CZ(ΦΨ) = CZ(Ψ) + 2µ(Φ).

2Together with many other authors whose names I have omitted; this is purely due to laziness on my
part.
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3. One has
sgn(det(1 −Ψ(1)) = (−1)n−CZ(Ψ).

4. Suppose Ψ1 ∈ S∗(2n1) and Ψ2 ∈ S∗(2n2). Let Ψ = Ψ1⊕Ψ2 ∈ S∗(2(n1+n2)). Then

CZ(Ψ) = CZ(Ψ1) + CZ(Ψ2).

5. If Θ : [0, 1] → Sp(R2n, ω0) is any continuous path then

CZ(ΘΨΘ−1) = CZ(Ψ).

6. If Ψ(t) has no eigenvalues of modulus 1 for t ∈ (0, 1] then CZ(Ψ) = 0.

7. For any Ψ ∈ S∗(2n), one has CZ(Ψ−1) = CZ(Ψ∗) = −CZ(Ψ).

8. Suppose Ψ(t) = exp(tJ0S) for some symmetric matric S satisfying ∥S∥ < 2π́. Then

CZ(Ψ) = −1

2
sgnS.

In fact, properties (1), (2) and (3) above characterize the Conley-Zehnder index
uniquely. There are several possible ways to define the Conley-Zehnder index. For our
purposes, the most useful one is due to Robbin and Salamon [RS93]. This however was
not the original definition. Suppose Ψ(t) = exp

(
J0
´ t
0 S(s)ds

)
is a continuously differen-

tiable path. Let us say a point t ∈ [0, 1) is a crossing if det(1 −Ψ(t)) = 0. Suppose t is a
crossing. Define the crossing form

Γ(Ψ, t) : ker 1 −Ψ(1) → R

by setting
Γ(Ψ, t)[v] := ω0(v,Ψ

′(t)v).

Using Ψ′ = J0SΨ, we can alternatively write

Γ(Ψ, t)[v] := −⟨S(t)v, v⟩ ,

since Ψ(t)v = v by assumption. We say that a crossing t is regular if the crossing form
Γ(Ψ, t) is a non-degenerate bilinear form. If t is a regular crossing then there exists ε > 0
such that there are no other crossings in (t− ε, t+ ε) ∩ [0, 1]. The following result is due
to Robbin and Salamon [RS93].

Theorem 6.8. Suppose Ψ ∈ S∗(2n) is continuously differentiable and has only regular
crossings. Then

CZ(Ψ) =
1

2
sgnΓ(Ψ, 0) +

∑
t

sgnΓ(Ψ, t),

where the sum is over all the crossings t ∈ (0, 1).

Unfortunately to apply Theorem 6.8 one has to know a priori that all the crossings
are regular. Luckily, one has the following result, which is a special case of [RS93, Lemma
2.2].

Lemma 6.9. Any path Ψ ∈ S∗(2n) can be uniformly approximated in S∗(2n) to a
continuously differentiable one, all of whose crossings are regular.

53



We will need the following two computations later.

Exercise 6.10. Take n = 1 and consider the path Ψθ(t) = exp(tSθJ0) , where

Sθ := −θ1 =

(
−θ 0
0 −θ

)
.

Show that Ψθ has only regular crossings, and check that

CZ(Ψθ) = 2

⌊
θ

2π

⌋
+ 1. (6.4)

Similarly show that if Ψ(t) =

(
et 0
0 e−t

)
then CZ(Ψ) = 0.

Let us now for the sake of completeness give another definition of the Conley-Zehnder
index. This definition is due to Salamon and Zehnder [SZ92], and has the advantage that
one does not need to perturb Ψ in order to compute it. Unfortunately though it is not
very practical for computations.

Theorem 6.11. Fix any two matrics W± ∈ Sp±(R2n, ω0) that satisfy
(
d̃et(W±)

)2
= 1.

Given any path Ψ ∈ S∗(2n), extend Ψ to a path Ψ̃ : [0, 2] → Sp(R2n, ω0) such that
Ψ̃(t) /∈ Sp0(R2n, ω0) for all 1 ≤ t ≤ 2, and such that Ψ̃(2) ∈ {W−,W+}. Then one has

CZ(Ψ) = degree

(
t 7→

(
d̃et(Ψ̃(t))

)2)
. (6.5)

Exercise 6.12. Show that the right-hand side of (6.5) is independent of the choice of
W± and of the choice of extension Ψ̃. Hint: Use Exercise 6.4.

We now compute “by hand” the Fredholm index of a particular operator. Equip C\{0}
with cylindrical polar coordinates

C\{0} ∼= R × S1,

e2π(s+it) ∼= (s, t).

We can define the operator

∂J0 :W 1,p(C,R2n) → Lp(C,R2n)

in exactly the same way as before:

∂J0 = ∂s + J0∂t.

Nevertheless in this section we wish to think of C as being obtained from the unit disc D
by gluing on [0,+∞)× S1:

C = D ∪∂D ([0,+∞)× S1).

Thus we continue to use the identification (s, t) ∼= e2π(s+it) on C\D by on the interior of
D we view D as a compact subset of C, rather than as the non-compact Riemann surface
(−∞, 0]×S1. In other words, on D we wish to use the measure rdr∧dφ in polar coordinates
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(r, φ) ∈ (0, 1)×R\2πZ, rather than the measure ds∧dt. One way to do this is to introduce
a smooth cut-off function

α : R → [0,+∞),

α(s) =

{
1

2πe2πs , s ≤ −1,

1, s ≥ 1,

α′(s) ≤ 0.

Now equip C\{0} with the measure

dµ =
1

α(s)2
· ds ∧ dt.

Thus on the cylindrical end we obtain the standard measure ds∧dt, whereas on the interior
of the disc {e2π(s+it) | s ≤ −1} we obtain the measure rdr ∧ dφ. Now define

D+
0 : C∞(C,R2n) → C∞(C,R2n)

by
D+

0 = α(s)∂J0 .

Suppose now we are given a matrix valued function S : [0,+∞) × S1 → L(R2n) with the
property thatlims→+∞ S(s, t) =: S+(t) is a symmetric loop of matrices whose associated
fundamental solution Ψ+ : [0, 1] → Sp(R2n, ω0) belongs to S∗(2n), and such that S(s, t) =
0 for all (s, t) ∈ [0, 1]× S1. Then it makes sense to study the operator

D+
S := D+

0 + α(s)S.

The notation ‘+’ is meant to indicate that we are viewing C here as obtained by obtaining
a positive cylindrical end to D. Now let

Lp
dµ(C,R

2n) :=

{
u ∈ Lp

loc(C,R
2n) |

ˆ
C
|u|p dµ <∞

}
,

and define
W 1,p

dµ (C,R2n) :=
{
u ∈W 1,p

loc (C,R
2n) | u, u′ ∈ Lp

dµ(C,R
2n)
}
,

We now prove:

Theorem 6.13. For any 1 < p < +∞ the operator

D+
S :W 1,p

dµ (C,R2n) → Lp
dµ(C,R

2n)

is a Fredholm operator of index

indD+
S = n− CZ(Ψ+).

Proof. The proof that D+
S is Fredholm can be carried out in a similar fashion to the proof

of Theorem 5.6, and thus may be safely left as an exerise to the reader:

Exercise 6.14. Prove that D+
S is indeed Fredholm.

In order to calculate the index we proceed in two steps.
Step 1: We prove the result in the case n = 1 in two special cases: take S(s, t) =

β(s)S+(t), where
β : [0,+∞) → [0, 1]

satsifies β(1) = 0 and β(2) = 1, with β′ ≥ 0. Moroever we take S+(t) to be the constant
matrix:
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1. Sθ =
(

−θ 0
0 −θ

)
for some θ ∈ R\2πZ,

2. S0 =

(
0 1
1 0

)
.

By Exercise 6.10, in Case (1) we have CZ(Ψ+) = 2
⌊

θ
2π

⌋
+ 1, and in Case (2) we have

CZ(Ψ+) = 0, and thus we must show that in Case (1) one has indD+
S = −2

⌊
θ
2π

⌋
and in

Case (2) we have indD+
S = 1. In fact, we will prove only the following statement:

Lemma 6.15. Given θ ∈ R\2πZ, if D+
θ := D+

S for S = Sθ as in Case (1) above, one has

dim ker D+
θ =

{
0, θ > 0,

2 {k ∈ Z | 0 ≤ k < −θ/2π} , θ < 0.

Proof. If u ∈ C∞
dµ(C,R

2n) belongs to the kernel of D+
S then we can expand u in a Fourier

series:
u(s, t) =

∑
k∈Z

uk(s)e
2πkit, uk : R → C.

Then one has

0 = D+
S u =

{
1

2πe2πs (∂s + i∂t)
∑

k uk(s)e
2πkit, s ≤ −1,

(∂s + i∂t − θ1)
∑

k uk(s)e
2πkit, s ≥ 1.

which tells us that the functions uk must satisfy the relations∑
k∈Z

1

2πe2πs
(
u′k(s)− 2πkuk(s)

)
e2πkit = 0, s ≤ −1,

∑
k∈Z

(
u′k(s)− 2πkuk(s)− θuk(s)

)
e2πkit = 0, s ≥ 1.

This tells us that:
u′k(s)− 2πkuk(s) = 0, , s ≤ −1,

u′k(s)− (2πk + θ)uk(s) = 0, s ≥ 1.

In other words, we must have

uk(s) = ake
2πks, s ≤ −1, (6.6)

uk(s) = ake
(2πk+θ)s, s ≥ 1. (6.7)

for some constants ak ∈ R. Let us take p = 2 (cf. Lemma 5.13. The requirement that
u ∈W 1,2

dµ (C,C) implies that
ˆ −1

−∞

(
1

4π2e4πs
(1 + 4π2k2) |uk|2 +

∣∣u′k∣∣2) ds <∞, (6.8)

ˆ +∞

1

(
(1 + 2πk) |uk|2 +

∣∣u′k∣∣2) ds <∞. (6.9)

Plugging in (6.6) to (6.8) we see that
ˆ −1

−∞

(
1

4π2e4πs
(1 + 4π2k2)a2ke

4πks + a2k4π
2ke4πks

)
ds < +∞,
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which implies that we must have ak = 0 for k ≤ 0 k ≥ 0.
Similarly plugging (6.7) into (6.9) we see that

ˆ +∞

1

(
(1 + 2πk)a2ke

(4πk+2θ)s + a2k(2πk + θ)2e(4πk+2θ)s
)
ds < +∞,

which implies we must haveak = 0 unless 4πk + 2θ < 0. It follows that

dimC ker D+
S = # {k ∈ Z | 0 ≤ k < −θ/2π} .

Thus the real dimension is twice this, and the lemma follows.

Exercise 6.16. Complete the proof of Step 1. Hint: Use the fact that the adjoint of Sθ
is S−θ to deal with Case (1). Case (2) is easier.

Step 2: We now complete the proof. Suppose to begin with that n ≥ 2. Then if
CZ(Ψ+) = k we can choose θ1, . . . , θm ∈ R\2πZ for some 1 ≤ m ≤ n such that

k =

(
2

⌊
θ1
2π

⌋
+ 1

)
+ · · ·+

(
2

⌊
θm
2π

⌋
+ 1

)
.

Let Ψi ∈ S∗(2n) denote the path Ψi(t) = exp(−tθiJ0) for i = 1, . . . ,m and let Ψi(t) =(
et 0
0 e−t

)
for i = m + 1, . . . , n. Let Ψ̃ = Ψ1 ⊕ · · · ⊕ Ψn. Then from Property (4) of

Theorem 6.7 and Exercise 6.10 one has CZ(Ψ̃) = k. If we write

Ψ̃(t) = exp

(
J0

ˆ t

0
S̃(s)ds

)
,

then it follows from an argument analogous to Exercise 6.6 that

indD+
S = indD+

β(s)S̃(t)
.

Moreover the argument of Step 1 shows that

indD+
β(s)S̃(t)

= n− CZ(Ψ̃).

Thus
indD+

S = indD+
β(s)S̃(t)

= n− CZ(Ψ̃) = n− CZ(Ψ+),

which completes the proof of Theorem 6.7.

We now recall the statement of the Riemann-Roch Theorem. Suppose Σ is a closed
Riemann surface, and let j denote an (integrable) almost complex structure on Σ. Suppose
(E, J) → (Σ, j) is a smooth complex vector bundle of complex rank m.

Definition 6.17. A real linear Cauchy-Riemann operator D is an operator

D : Γ(Σ, E) → Ω0,1(Σ, E)

which is R-linear and which satisfies the Leibniz rule

D(f · ξ) = f ·Dξ + ∂f · ξ (6.10)

for f : Σ → R and ξ ∈ Ω0(Σ, E). Here ∂ : C∞(Σ) → Ω0,1(Σ) is the composition of the
∂f = π0,1(df).
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If one asks that D is C-linear and that (6.10) also holds for complex valued f (in which
case we sayD is a complex linear Cauchy Riemann operator) then a deep theorem says that
complex linear Cauchy-Riemann operators are in 1-1 correspondence with holomorphic
structures on E.

Theorem 6.18 (The Riemann-Roch Theorem). A Cauchy-Riemann operator extends to
a well defined operator

D :W 1,p(Σ, E) → Lp(Σ,Λ0,1T ∗Σ⊗ E)

which is Fredholm of index

indD = mχ(Σ) + 2 ⟨c1(E), [Σ]⟩ .

Exercise 6.19. Look up the classical statement of the Riemann-Roch Theorem in an
algebraic geometry textbook. Reconcile the statement there with the one above. Hint:
Every complex vector bundle is isomorphic to a holomorphic one. If D is a complex
linear Cauchy Riemann operator then the index of D can be identified with the dimen-
sion of certain Dolbeault cohomology groups. Look at [MS12, Remark C.1.11] for more
information.

Later on we will need more to use the full statement of Theorem 6.18, but for now we
need only the following corollary.

Corollary 6.20. Consider the operator

∂ : C∞(S2,R2n) → Ω0,1(S2,R2n),

∂u := du+ j ◦ du ◦ j.

Then ∂ is Fredholm of index 2n.

We can now finally prove our main result:

Theorem 6.21. Fix 1 < p < +∞ and suppose S : R × S1 → L(R2n) is a smooth map
such that the limits S±(t) := lims→±t S(s, t) exist and the convergence is uniform in t.
Suppose that S± are symmetric, and that the assocaited symplectic matrices Ψ±(t) =

exp
(
J0
´ t
0 S(s)ds

)
belong to S∗(2n). Then the operator

DS :W 1,p(R × S1,R2n) → Lp(R × S1,R2n)

is Fredholm of index
indDS = CZ(Ψ−)− CZ(Ψ+).

Proof. Consider an operator D+
S− = D−

β(s)S−(t)
: W 1,p

dµ (C,R2n) → Lp
dµ(C,R

2n) as in The-
orem 6.13. Then indD+

S− = n − CZ(Ψ−). Similarly we can form another operator D−
S+

defined on C, this time thought of attaching a negative cylindrical end to D. Arguments
entirely similar to those of Theorem 6.13 show that D−

S+ is Fredholm of index n+CZ(Ψ+).
Next, if we glue all three operators together we obtain an operator

D = D+
S−#DS#D

−
S+ :W 1,p(S2,R2n) → Lp(S2,R2n),

whose index satisfies
indD = indD+

S− + indDS + indD−
S+ ,
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by Theorem 5.15. This operator agrees with the operator ∂ from Corollary 6.20 away
from a compact subset of S2, and hence the Fredholm index of D is the same as that of
∂. Thus

indDS = 2n− (n− CZ(Ψ−))− (n+CZ(Ψ+)) = CZ(Ψ−)− CZ(Ψ+)

as required.

We now define the index CZ(x) of a solution x ∈ P1(H).

Definition 6.22. Fix x ∈ P1(H) and choose an admissible symplectic trivialisation Φ :
S1×R2n → x∗TQ (in the sense of Definition 3.18). Define the symplectic path Ψ ∈ S∗(2n)
by

Ψ(t) := Φ−1
t ◦DϕtH ◦ Φ0. (6.11)

Then define the Conley-Zehnder index of x, written CZ(x), by

CZ(x) := CZ(Ψ).

Exercise 6.23. Show that the definition of CZ(x) is well defined (i.e. independent of the
choice of admissible symplectic trivialisation). Hint: Use Lemma 3.19.

We can now summarise our work in Section 5 and Section 6.

Theorem 6.24. Let H ∈ Hreg and choose J ∈ J (Q,ω). Fix a pair x−, x+ of elements
of P1(H). Then if u ∈ M(x−, x+) is a zero of the Floer operator ∂J,H from Definition 4.3
then the vertical derivative Dv∂J,H(u) is a Fredholm operator of index CZ(x−)−CZ(x+).
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CHAPTER 7

Transversality for the moduli spaces
In this section we show that, after a further perturbation of the Hamiltonian H away from
the set of points in M lying on the image of an element of P1(H), the section ∂J,H is onto
at every solution u ∈ M(x−, x+), for every pair x± of elements of P1(H).

Definition 7.1. Let H0 ∈ Hreg denote a Hamiltonian with the property that all of the
elements of P1(H0) are non-degenerate. Denote by H(H0) denote the subset of C∞(S1×Q)
of functions H such that H agrees with H0 up to second order on the set {x(S1) | x ∈
P1(H)} ⊂ Q.

Here is the main result of this section.

Theorem 7.2. Let H0 ∈ Hreg and fix J ∈ J (Q,ω). Let H∂(H0, J) denote the subset of
functions H ∈ H(H0) with the property that for every pair x−, x+ of elements in P1(H0),
and every solution u ∈ M(x−, x+), the operatore Dv∂J,H(u) is surjective and admits a
right inverse. Then the set H∂(H0, J) is of second category in H(H0).

Note that by the Implicit Function Theorem 1.6 and Theorem 6.24, if H ∈ H∂(H0, J)
then for any two orbits x− and x+ in P1(H0), the moduli spaces M(x−, x+) are all
manifolds of dimension CZ(x−)− CZ(x+).

Remark 7.3. Note that if H ∈ H(H0) is such that ∥H −H0∥C2(S1×Q) is sufficiently small
then P1(H) = P1(H0) and thus in particular H ∈ Hreg. For the purposes of defining the
Floer groups associated to the Hamiltonian system determined by H0 ∈ Hreg (i.e. the
Floer groups whose generators are the elements of P◦

1 (H0)), it is sufficient to work with
any element H in the set

H∂
reg(H0) :=

{
H ∈ H∂(H0, J) | P1(H) = P1(H0)

}
The proof of Theorem 7.2 is similar to the proof of Theorem 3.21, and involves an

application of the Transversality Theorem 3.22. However this result is considerably more
difficult: this should be compared to case of Morse theory, where it is much harder to
show that a generic pair (f, g) is Morse-Smale (Theorem 1.18) than it is to show that a
generic function f is Morse. The proof we will give is due to Salmon and Zehnder [SZ92].
However the main step in the proof was not rigourously proved until a few years later, by
Floer, Hofer, and Salamon [FHS96]. This step is the following result on the existence of
regular points of solutions of the Floer equation.

Definition 7.4. Fix a pair x± of elements of P1(H) and an element u ∈ M(x−, x+). A
point (s, t) ∈ R × S1 is called a regular point of u if:

∂su(s, t) ̸= 0, u(s, t) ̸= x±(t), u(s, t) ̸= u(s′, t) for some s′ ̸= s.

We denote by R(u) the set of regukar points of u. Note that if (s, t) is a regular point of
u then the curve σ 7→ u(σ, t) is an immersion for σ near s and meets the point u(s, t) only
once.

The reason why we require more than just ∂su(s, t) ̸= 0 in the definition of regular
points is provided by the following exercise.
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Exercise 7.5. Suppose (s0, t0) ∈ R(u). Prove that there exists a neighborhood U0 ⊂
S1 ×M of (t0, u(s0, t0)) such that

V0 :=
{
(s, t) ∈ R × S1 | (t, u(s, t)) ∈ U0

}
is a neighborhood of (s0, t0) in R × S1. Similarly prove that for any smooth function
k : R × S1 → R which is supported in a sufficiently small neighborhood of (s0, t0), there
exists a smooth cutoff function ν : S1 ×Q→ R such that

ν(t, u(s, t)) = k(s, t), for all (s, t) ∈ R × S1. (7.1)

Here is the key result of Floer, Hofer and Salamon [FHS96] mentioned above that we
will use to prove Theorem 7.2.

Theorem 7.6. If x− ̸= x+ then the set R(u) is always an open, dense subset of R × S1.

For now let us assume Theorem 7.6 and show it can be used with the Tranversality
Theorem 3.22 to prove Theorem 7.2.

Proof of Theorem 7.2. Fix p > 2 and k ≥ 2, and consider the section

σ : B1,p(x−, x+)×Hk(H0) → Ep

defined by
σ(u,H) := ∂J,H(u),

where B1,p(x−, x+) was defined in Definition 4.4 and Ep was defined in equation (4.3),
and Hk(H0) is defined in the same way as H(H0), only working with functions of class
Ck instead of C∞. Note that the tangent space to Hk(H0) is simply the set of function
Ĥ ∈ Ck(S1 × Q) that vanish to second order over points in Q lying over elements of
P1(H0). The vertical derivative of this section at a zero (u,H) is the operator

Dvσ(u,H) :=W 1,p(u∗TQ)× THH(H0) → Lp(u∗TQ),

Dvσ(u,H)[û, Ĥ] = Dv∂J,H(u)[û]−∇Ĥt(u).

Here
Dv∂J,H(u)[û] = ∇sû+ J(u)∇tû+∇ûJ(u)∂tu−∇û∇Ht(u). (7.2)

Here we warn the reader not to be misled: the symbol “∇” refers to both the Levi-Civita
connection of the metric ω(J ·, ·), as well as the gradient with respect to this metric (so
that ∇Ht(u) = J(u)XHt(u).)

Exercise 7.7. Verify (7.2) by arguing as in the proof of Lemma 3.15.

By the Transversality Theorem 3.22, it is sufficient to show that Dvσ(u,H) is surjec-
tive, or equivalently, that the annhilator of its image vanishes. In other words, we must
show that if ŵ ∈ Lq(u∗TQ), where 1/p+ 1/q = 1, satisfies
ˆ

R

ˆ
S1

⟨
Dvσ(u,H)[û, Ĥ], ŵ

⟩
J
dtds = 0, for all (û, Ĥ) ∈W 1.p(û∗TQ)× THHk(H0),

then ŵ ≡ 0. Note that any such ŵ is in particular a weak solution of the equation

(Dv∂J,H(u))∗[ŵ] = 0,

and hence by elliptic regularity (Theorem 4.19), any such ŵ is neccesarily a strong solution,
and is smooth.
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Remark 7.8. In the proof of Theorem 7.6 below we shall show that any such solution ŵ
satisfies the “principle of analytic continuation” property enjoyed by holomorphic maps:
namely that if ŵ vanishes on an open subset of R × S1 then ŵ vanishes everywhere (see
Proposition 7.14). In fact, we will show that ŵ vanishes on the open subset R(u); since this
set is also dense by Theorem 7.6 we do not actually need to use the principle of analytic
continuation here in order to conclude. Nevertheless it is perhaps helpful to remark that
in theory we need only show that ŵ vanishes on an open set.

We will now prove that any smooth map ŵ ∈ Lq(u∗TQ) that satisfies
ˆ

R

ˆ
S1

dĤt(u)[ŵ]dtds = 0, for all Ĥ × THHk(H0), (7.3)

is in fact, identically zero. The strategy of the proof is thus:

1. We first show that if C(u) :=
{
(s, t) ∈ R × S1 | ∂su(s, t) = 0

}
then there exists a

unique Ck-function α : (R × S1)\C(u) → R such that

ŵ(s, t) = α(s, t)∂su(s, t).

2. We then show that ∂sα(s, t) = 0, and hence as C(u) is discrete (cf. Lemma ??), α
extends to a unique Ck-function α : S1 → R\{0} such that

ŵ(s, t) = α(t)∂su(s, t). (7.4)

3. We show that (7.4) contradicts the assertion that ŵ ∈ Lq(u∗TQ), thus completing
the proof.

In order to prove (1) it suffices to obtain a contradiction from the hypothesis that there
exists a point (s0, t0) ∈ R(u) such that ŵ(s0, t0) and ∂su(s0, t0) are linearly independent.
Since (s0, t0) ∈ R(u), by Exercise 7.5, there exists a neighborhood U0 ⊂ S1 × M of
(t0, u(s0, t0)) such that

V0 :=
{
(s, t) ∈ R × S1 | (t, u(s, t)) ∈ U0

}
is a neighborhood of (s0, t0) in R×S1. Consider now function ft : B((0, s0); ε) → U0 (here
B((0, s0); ε) denotes the disc of radius ε > 0 in R2 about the point (0, s0)) defined by

ft(r, s) := expu(s,t)(rŵ(s, t)).

By choice of U0 the function ft is an embedding satsifying

ft(0, s) = ∂su(s, t), ∂rft(0, s) = ŵ(s, t).

Conisder now a cutoff function β : R → [0, 1] which is equal to 1 on a small neighborhood
of 0 and zero elsewhere. Since ft is an embedding and (s0, t0) ∈ R(u), we can find
Ĥ ∈ THHk(H0) such that Ĥ is supported in U0 and such that Ĥt satisfies

Ĥt(ft(r, s)) = rβ(r)β(s− s0)β(t− t0).

Differentiating with respect to r at r = 0 we see that

dĤt(u(s, t))[ŵ(s, t)] = β(s− s0)β(t− t0),
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and hence
ˆ

R

ˆ
S1

dĤt(u(s, t))[ŵ(s, t)]dsdt =

ˆ ˆ
U0

dĤt(u(s, t))[ŵ(s, t)]dsdt > 0,

thus contradicting (7.3). This finishes the proof of (1). The proof of (2) is similar: if
∂sα ̸= 0 then there exists a point (s0, t0) ∈ R(u) and a smooth function k : R × S1 → R
with support in a neighborhood V0 of (s0, t0) as above such that

ˆ ˆ
V0

α∂skdsdt =

ˆ ˆ
V0

∂sαkdsdt ̸= 0.

Now by Exercise 7.5 we can choose a function ν : S1 × Q → R such that equation (7.1)
holds:

ν(t, u(s, t)) = k(s, t).

Set Ĥt := ν(t, ·). Then we have
ˆ

R

ˆ
S1

dĤt(u(s, t))[ŵ(s, t)]dsdt > 0,

which again contradicts (7.3). Finally to prove (3) we may assume without loss of gener-
ality that α(t) > 0 for all t. We claim that

d

ds

ˆ 1

0
⟨∂su(s, t), ŵ(s, t)⟩J dt = 0. (7.5)

Indeed, since
Dv∂J,H(u)[∂su] = 0, (Dv∂J,H(u))∗[ŵ] = 0,

we have that in a suitable symplectic trivialisation of u∗TQ, if v̂1(s, t) corresponds to
∂su(s, t) and v̂2(s, t) corresponds to ŵ(s, t), then

∂sv̂1 + J0∂tv̂2 + Sv̂1 = 0, ∂sv̂2 − J0∂tv̂2 − S∗v̂2 = 0

for some matrix valued function S (see equation (5.1)). Then

d

ds

ˆ 1

0
⟨v̂1, v̂2⟩ dt =

ˆ 1

0
⟨∂sv̂1, v̂2⟩+ ⟨v̂1, ∂sv̂2⟩ dt

=

ˆ 1

0
⟨−J0∂tv̂2 − Sv̂1, v̂2⟩+ ⟨v̂1, J0∂tv̂2 + S∗v̂2⟩ dt

= −
ˆ 1

0
∂t ⟨J0v̂1, v̂2⟩ dt = 0.

But (7.5) implies that ˆ
R

ˆ
S1

⟨∂su, ŵ⟩J dsdt = +∞,

since ˆ
S1

⟨∂su, ŵ⟩J dt =
ˆ
S1

α(t) |∂su(s, t)|2J dt > 0.

This contradicts the fact that ∂su ∈ Lp(u∗TQ) and ŵ ∈ Lq(u∗TQ), and thus finally
completes the proof of Theorem 7.2.
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We will now work towards proving the so-called principle of analytic continuation.
The material in this section is taken from [FHS96]. In what follows we denote by Bε =
B(0; ε) ⊂ C the disc of radius ε. We write z = s + it. We denote by LR(Cn) the set of
R-linear maps Cn → Cn.

Proposition 7.9 (The Carleman Similarity Principle). Let J ∈ W 1,p(Bε, LR(Cn)) with
J(z)2 = −1 for each z ∈ Bε, and let S ∈ Lp(Bε, LR(Cn)), and suppose u ∈ W 1,p(Bε,Cn)
solves the equation

∂su(z) + J(z)∂tu(z) + S(z)u(z) = 0, u(0) = 0.

Then there exists 0 < δ < ε and a map Φ ∈W 1,p(Bδ,GLR(Cn)) such that

J(z)Φ(z) = Φ(z)i,

together with a holomorphic map w : Bδ → Cn such that w(0) = 0 and such that

u(z) = Φ(z)w(z), for all z ∈ Bδ.

Proof. First choose 0 < δ1 < ε and a map Ψ ∈W 1,p(Bδ1 ,GLR(Cn)) such that

Ψ(z)J(z) = Ψ(z)i, for all z ∈ Bδ1 .

Exercise 7.10. Prove such a Ψ exists.

We now define v ∈ W 1,p(Bδ1 ,C
n) by requiring that u(z) = Ψ(z)v(z). We would be

done if v was holomorphic, but sadly this is unlikely to be the case. Indeed, we compute
that

0 = ∂su+ J∂tu+ Su = Ψ(∂sv + i∂tv + Tv), (7.6)

where
T := Ψ−1(∂sΨ+ J∂tΨ+ SΨ) ∈ Lp(Bδ1 , LR(C

n)).

Our aim is thus to modify Ψ so that the T term disappears. Let us split T into its complex
linear and anti-linear parts:

T±(z) :=
1

2
(T (z)∓ iT (z)i).

We multiply T− by a new map B such that if A := T+ + T−B then A is complex linear
and satsifies T (z)v(z) = A(z)v(z) for all z ∈ Bδ. For instance, we could take

B(z)[ζ] :=

{
1

|v(z)|2 v(z) · v(z)
T · ζ̄, v(z) ̸= 0,

0, v(z) = 0.

Given 0 < δ < δ1, let Aδ denote the operator that coincides with A on Bδ and vanishes
outside of Bδ. We regard Aδ as a map defined on S2; note that Aδ ∈ Lp(S2, LR(Cn)).Now
consider the Cauchy-Riemann operator

Dδ :W
1,p(S2, LR(C)) → Lp(S2,Λ0,1T ∗S2 ⊗ LR(C

n)).

defined by
DδU = ∂U +AδUdz, U ∈W 1,2(S2, LR(C

n)).

By Corollary 6.20 , we see that Dδ is a Fredholm operator of index 2 dimC LR(Cn).
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Exercise 7.11. Prove that the map

Θδ :W
1,p(S2, LR(C

n)) → Lp(S2,Λ0,1T ∗S2 ⊗ LR(C
n))× LR(C

n)

defined by
Θδ(U) := (∂̄U, U(0))

is a bijective. Hint: Use Corollary 6.20, together with the analgoue of Liouville’s Theorem
from complex analysis.

Since the operator Aδ satisfies limδ→0 ∥Aδ∥Lp(S2,LR(Cn)) = 0, it follows that for δ suffi-
ciently the map U 7→ (DδU,U(0)) is also bijective. Thus for δ > 0 sufficiently small there
exists a function Eδ ∈W 1,p(S2, LR(Cn)) such that

DδEδ = 0, Eδ(0) = 1.

Moreover since Eδ converges to the constant map as δ → 0 in the W 1,p-norm, we see that
for δ > 0 sufficiently small that complex linear map Eδ is invertible. Fix such a δ and
set Φ(z) := Ψ(z)Eδ(z) and w(z) := Eδ(z)

−1v(z). Then clearly Φ ∈W 1,p(Bδ, LR(Cn)) and
J(z)Φ(z) = Φ(z)i for all z ∈ Bδ. Moreover we certainly have u(z) = Φ(z)w(z) in Bδ. It
remains to show that w is holomorphic. Since

∂sEδ + i∂tEδ +AδEδ = 0,

we see from (7.6) that

0 = ∂sv + i∂tv + Tv = Eδ(∂sw + i∂tw).

Thus w is holomorphic.

Corollary 7.12. Let k ≥ 2 and p > 2 and suppose J ∈ W k,p(Bε, LR(Cn)) satisfies
J(z)2 = −1 for each z ∈ Bε. Let S ∈ W k−1,p(Bε, LR(Cn)) and suppose u ∈ W k,p(Bε,Cn)
solves the equation

∂su(z) + J(z)∂tu(z) + S(z)u(z) = 0, u(0) = 0.

There exists a constant 0 < δ < ε such that u(z) ̸= 0 for all z ∈ Bδ\{0}. Moreover if
S ≡ 0 then there exists a constant 0 < δ < ε such that Du(z) ̸= 0 for each z ∈ Bδ\{0}.

Proof. The first statement is immediate from Proposition 7.9. The second statement is
obvious if Du(0) ̸= 0, so assume that Du(0) = 0. Set v := ∂su. Then

∂sv + J(z)∂tv + (∂sJ)(z)J(z)v = 0.

Now apply the first statement to v, noting that Du(z) = 0 if and only if ∂sv(z) = 0.

Definition 7.13. A function u ∈W 1,p(C,Cn) is said to vanish to infinite order at a point
z0 ∈ C if

sup
k∈Z

lim
r↓0

supz∈B(z0;r) |u(z)|
rk

= 0.

If u is smooth then the set of points that u vanishes to infinite order is closed. Moreover
if u is holomorphic then the set of such points is both open and closed.
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Proposition 7.14 (The Principle of Analytic Continuation). Suppose J : C × Cn →
LR(Cn) is of class W 1,p with p > 2, and suppose that J(z, w)2 = −1. Suppose that
S : C × Cn → LR(Cn) is of class W 1,p. Suppose u and v are two solutions of the equation

∂su+ J(z, u)∂tu+ S(z, u(z)) = 0,

defined on open subset Ω ⊂ C. Then the set of points in Ω such that u − v vanishes to
infinite order is both open and closed.

Proof. Set w := u− v and define

T (z) :=

(ˆ 1

0

d

dr
(S(z, u+ r(v − u)dr

)
∂tv +

ˆ 1

0

d

dr
S(z, u+ τ(v − u),

and hence w satisfes
∂sw + J̃(z)∂rw + T (z)w = 0,

where J̃(z) := J(z, u(z)). The result now follows from the Carleman Similarity Principle,
combined with the analogous statement about holomorphic maps.

We now prove that the set C(u) of points where ∂su vanishes of a solution of Floer’s
equations is discrete.

Lemma 7.15. Suppose J : Cn → LR(Cn) is of class Ck with p > 2, and suppose that
J(z)2 = −1. Suppose that X : R× Cn → Cn is a vector field of class Ck. is of class W 1,p.
Suppose u : Bε → C is a W 1,p-solution (and hence a Ck-solution by elliptic regularity) of
the equation

∂su+ J(u)∂tu− J(u)X(t, u(z)) = 0.

Then the set C(u) of points z = s+ it in Bε for which ∂su(s, t) = 0 is discrete.

Proof. Let ϕt : Ωt → Cn denote the local flow of X(t, ·). The assertion of the lemma is
local, so it sufficies to consider the case u(s, t) ∈ ϕt(Ωt) for each z ∈ Bε. We wish to
reduce the lemma to the case X(t, ·) ≡ 0. Set v(s, t) := (ϕt)

−1(u(s, t)). Then

∂su = Dϕt(v)∂sv, ∂tu−X(t, u) = Dϕt(v)∂tv,

and hence if
J̃(t, z) := (Dϕt(z))

−1J(ϕt(z)) ◦Dϕt(z)

then
∂sv + J̃(t, z)∂tv = 0.

Moreover Dv(z) = 0 if and only if ∂su(z) = 0. Finally Corollary 7.12 tells us that the
critical points of v are discrete.

We will need one more preliminary result before embarking on the proof of Theorem
7.6.

Lemma 7.16. Suppose J : R × Cn → LR(Cn) is of class W 1,p with p > 2, and suppose
that J(t, z)2 = −1. Suppose u, v ∈ Ck(Bε,Cn) satsify

∂su+ J(t, u)∂tu = 0, ∂sv + J(t, v)∂tv = 0,

u(0) = v(0), Du(0) ̸= 0, Dv(0) ̸= 0.

Suppose moreover that there exists a constant 0 < δ < ε such that for all (s, t) ∈ Bδ there
exists another point (s′, t) ∈ Bε such that u(s, t) = v(s′, t). Then u and v coincide on Bε.
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Proof. Up to shrinking ε, we may assume that N := v(Bε) is a submanifold of Cn. The
implicit function theorem implies that the map v−1 : N → Bε extends to a Ck map defined
on a neighborhood of N . Moreover by assumption u(Bδ) ⊂ N , and the composition
v− ◦ u : Bδ → Bε is of the form

v−1 ◦ u(s, t) = (ψ(s, t), t).

Differentiating the equation u(s, t) = v(ψ(s, t), t) we obtain

0 = ∂su(s, t) + J(t, u)∂tu(s, t)

= ∂sv(ψ, t)∂sψ + J(t, v(ψ, t))(∂sv(ψ, t)∂tψ + ∂tv(ψ, t))

= (∂sψ − 1)∂sv(ψ, t) + ∂tψ∂tv(ψ, t).

Since ∂sv(ψ, t) and ∂tv(ψ, t) are linearly independent, we see that ∂sψ = 1 and ∂tψ =
0.Thus ψ(s, t) = s + s0 for some s0 ∈ R. Since both u and v fix the origin, we see that
s0 = 0. Thus on a small neighborhood fo 0, u and v coincide. By the principle of analytic
continuation, in fact they coincide everywhere. This completes the proof.

We can now finally complete the proof of Theorem 7.6

Proof of Theorem 7.6. We first reduce the proof to the case XH ≡ 0. This is done via the
same trick as the one employed in the proof of Lemma 7.15: consider the flow ϕtH of XH

and replace u with v(s, t) := (ϕtH)−1(u(s, t)). Then v satisfies the equation

∂sv + J̃(t, v)∂tv = 0,

where
J̃t(x) := (DϕtH)−1 ◦ J(ϕt(x)) ◦Dϕt(x).

Moreover
lim

s→±∞
v(s, t) = q±,

where x±(0) := q±. By definition R(u) = R(v), and thus it suffices to show that R(v)
is open and dense. Suppose R(v) is not open: then there exists (s, t) ∈ R(v) such that
there exists (sk, tk) → (s, t) with (sk, tk) ∈ R2\R(v). I have a sneaking suspicion that
no one is reading these notes (apart from me). So as a test: the first person to tell me
in class that the moon is made of cheese gets 100% in the exam3. Since (s, t) ∈ R(v),
we see that for k sufficiently large we have ∂sv(sk, tk) ̸= 0 and v(sk, tk) ̸= q±. Thus the
third condition in the definition of regular points must fail: there exists s′k ̸= sk such
that v(sk, tk) = v(s′k, tk) for each k ∈ Z. If s′k is unbounded, passing to subsequence we
may assume s′k → ±∞. This implies that v(s, t) = q±, which contradicts the assertion
that (s, t) ∈ R(v). Thus s′k is bounded, and hence we may assume s′k → s′. Then
v(s, t) = v(s′, t), and since (s, t) ∈ R(v), this implies that s = s′. Since both sk → s and
s′k → s, with v(sk, tk) = v(s′k, tk) for each k, it follows that ∂sv(s, t) = 0, which contradicts
the fact that (s, t) ∈ R(v).

The argument that R(v) is dense is more involved, and we refer the reader to [FHS96,
p261-262]. Here we only outline the details:

1. If there exists (s0, t0) ∈ (R× S1)\C(v) and ε > 0 such that B((s0, t0); ε) ∩R(v) = ∅
then there exists s1 ∈ R and 0 < δ < ε such that on B((s0, t0); δ) the conditions of
Lemma 7.16 are satisfied by v(s, t) and v(s+ s1, t).

3Well done to C. Antony for passing the test. Everyone else FAILED.
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2. Lemma 7.16 thus implies that v(s, t) = v(s+s1, t) on B((s0, t0); δ), and the principle
of analytic continuation (Proposition 7.14) implies that v(s, t) = v(s + s1, t) for all
(s, t) ∈ R × S1.

3. This implies that v is constant: indeed for each (s, t) ∈ R × S1,

v(s, t) = lim
k→±∞

v(s+ ks1, t) = q±.

But this implies that u(s, t) = x−(t) = x+(t), which contradicts the assertion that
x− ̸= x+.

Obviously the hard work is in verifying (1). This we omit4.

4Since I am really tired...
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CHAPTER 8

Compactness and gluing
Let us now fix once and for all an almost complex structure J ∈ J (Q,ω) and a Hamil-
tonian H ∈ C∞(S1 × Q) such that every element of P◦

1 (H) is non-degenerate, and such
that for any two orbits x−, x+ belonging to P◦

1 (H) and any u ∈ M(x−, x+), the vertical
derivative Dv∂̄J,H(u) is surjective. In other words, from now on we will always assume that
all the moduli spaces are manifolds. The aim of this section is to discuss the compactness
properties of the spaces M(x−, x+). Of course, as we have seen the space M(x−, x+) can
never be compact if x− ̸= x+, since it carries a free translation R-action. However as we
will see the space M(x−, x+) := M(x−, x+)/R is sometimes compact.

Let us denote by M♯ the space of all gradient flow lines:

M♯ :=
{
u ∈ C∞(R × S1, Q) | u(s, ·) ∈ LQ, ∀ s ∈ R, ∂̄J,H(u) = 0

}
. (8.1)

Definition 8.1. We define the energy E : M♯ → [0,+∞] by

E(u) := −
ˆ +∞

−∞

d

ds
AH(u(s, ·))ds.

Note that

E(u) = −
ˆ +∞

−∞
dAH(u(s, ·)[∂su(s, ·)]ds

= −
ˆ +∞

−∞
⟨⟨∇AH(u(s, ·)), ∂su⟩⟩Jds

=

ˆ +∞

−∞
⟨⟨∂su, ∂su⟩⟩ds

=
1

2

ˆ +∞

−∞

ˆ
S1

(
|∂su|2J + |∂tu−XHt(u)|2J

)
ds.

In particular, this proves:

Lemma 8.2. The energy E : M♯ → [0,+∞] satisfies:

1. One has E(u) ≥ 0, with equality if and only if u is a constant gradient flow line, that
is, u(s, t) ≡ x(t) for some x ∈ P◦

1 (H).

2. If u ∈ M(x−, x+) then
E(u) = AH(x−)− AH(x+). (8.2)

Corollary 8.3. If M(x−, x+) ̸= ∅ then AH(x−) ≥ AH(x+) and CZ(x−) ≥ CZ(x+). If in
addition x− ̸= x+ then AH(x−) > AH(x+) and CZ(x−) > CZ(x+).

Proof. We need only prove the last statement, and this is simply the observation that if
x− ̸= x+ then the space M(x−, x+) is at least one-dimensional if non-empty, since it is
invariant under the translation R-action.

The next result is the analogue of Theorem 1.20, in the Floer setting. We shall prove
a more general version of Theorem 8.4 in Theorem 8.23 below.
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Theorem 8.4 (Baby compactness). Suppose CZ(x−) = CZ(x+) + 1. Then the moduli
space M(x−, x+) is compact, and hence a finite set.

It follows from Theorem 8.4 that the following definition makes sense.

Definition 8.5. Suppose CZ(x−) = CZ(x+) + 1. Then we define

n(x−, x+) := #2M(x−, x+).

We can then mimic the Morse-theoretic definition (cf. Definition def:the boundary
operator). We define the Floer chain group to be We then have a well defined operator

CFk(H) :=
⊕

x∈P◦
1 (H),CZ(x)=k

Z2 ⟨x⟩ ,

and we define the boundary operator

∂ = ∂J : CFk(H) → CFk−1(H)

by requiring that

∂
⟨
x−
⟩
:=

∑
y∈P◦

1 (H),CZ(x+)=CZ(x−)−1

n(x−, x+)
⟨
x+
⟩
,

and then extending by linearity. However just as in the Morse case, Theorem 8.4 is not
sufficient to prove that ∂ ◦ ∂ = 0, and hence (CF∗(H), ∂) is a chain complex. For this
we will need a more sophisticated compactness theorem, which we will state and prove
later in this chapter (see Theorem ??). To begin with, we will study the space of all finite
energy gradient flow lines, and show that this space is compact.

Definition 8.6. We define

M :=
{
u ∈ M♯ | E(u) < +∞

}
.

Our first result about the space M is the following, which is a consequence of the
elliptic regularity results from Chapter 4.

Proposition 8.7. On M the C0
loc and the C∞

loc-topologies coincide.

Proof. Suppose (uk) ∈ M converges in C0
loc to some u. We already know that all the uk

and u are of class C∞, but what we don’t yet know is whether uk converges to u in the
C∞
loc topology. By working in a chart, we may assume that Q = R2n. Fix p > 2. Let us

abbreviate

Jk(s, t) := J(uk(s, t)), fk(s, t) := J(uk(s, t))XHt(uk(s, t)).

Thus Jk converges to J(u) and fk converges to J(u)XH(u) in C0
loc, and hence also in Lp

loc.
Note that

0 = ∂s(uk − u) + Jk(∂t(uk − u)) + fk − f + (J(u)− Jk)∂tu. (8.3)
Fix open domains U ⊂ Ω ⊂ R×S1 with compact closure, such that U ⊂ Ω. Since Jk → J
in Lp

loc, there exists a constant c0 > 0 such that ∥Jk∥Lp(Ω) ≤ c0. We now apply Theorem
4.19 to uk − u, using (8.3), to obtain a constant c > 0 such that

∥uk − u∥W 1,p(U) ≤ c
(
∥fk − f∥Lp(Ω) + ∥uk − u∥Lp(Ω) + ∥Jk − J(u)∂tu∥Lp(Ω)

)
. (8.4)

Since we already know that uk converges to u in Lp
loc, the right-hand side of (8.4) is

infinitesimal, and thus we see that uk converges to u in W 1,p
loc . But now we can iterate this

to see that uk converges to u in W 1,l
loc for all l ∈ N. By Rellich’s Compactness Theorem it

follows that uk converges to u in C∞
loc as required.
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The next result is the first key property of the space M.

Theorem 8.8. [No bubbling] The space M is compact in the C∞
loc-topology.

Remark 8.9. Theorem 8.8 is known as the "No bubbling Theorem" because, as we will see,
the main content is the assertion that "bubbles" cannot form. In general the existence of
bubbles are the obstruction to compactness in Floer theory. The main reason we assumed
that the map Iω : π2(Q) → R from Definition 2.18 vanished was to exclude bubbling.
Remark 8.10. In fact, a slightly stronger result is true. If H is degenerate but the the
set P◦

1 (H) is finite then the space M is still compact (although in this case the spaces
M(x−, x+) do not necessarily carry a manifold structure!). We will leave the verification
of this additional statement to the reader; one simply needs to note that the proof only
ever uses the fact that P◦

1 (H) is finite.
For now we will assume Theorem 8.8 and proceed. The proof will be given later in

this chapter. Observe that (8.2) implies that M(x−, x+) ⊂ M for each pair x−, x+ in
P◦
1 (H). In fact, the converse holds.

Theorem 8.11. The space M is precisely the union of the spaces M(x−, x+):

M =
∪

x−,x+∈P◦
1 (H)

M(x−, x+).

Remark 8.12. Recall from Definition 4.4, the spaces M(x−, x+) were defined as subsets
of a space B1,p(x−, x+) of maps that satisfies a certain asymptotic decay condition (see
(4.4)). Thus one consequence of Theorem 8.11 is that all finite energy gradient flow lines
exhibit this asymptotic behaviour.
Remark 8.13. In fact, as with Remark 8.10, Theorem 8.11 only needs us to assume that
the set P◦

1 (H) is finite. Again, we leave this to the conscientious reader to check.
We will now prove Theorem 8.11, assuming Theorem 8.8. The first step is the following

cute little lemma.

Lemma 8.14. Let (X, d) be a complete metric space and h : X → (0,+∞) a continuous
function. For every x0 ∈ X and ε0 > 0 there exists x1 ∈ B(x0; 2ε0) and 0 < ε1 ≤ ε0 such
that

h(x1)ε1 > h(x0)ε0,

and such that
h(y) ≤ 2h(x1), for all y ∈ B(x1; ε1).

Proof. If h(x) ≤ 2h(x0) for all x ∈ B(x0; ε0) we are done with x1 := x0 and ε1 := ε0.
Otherwise there exists y1 ∈ B(x0; ε0) such that h(y1) > 2h(x0). Set δ1 := 1

2ε0, so that
δ1h(y1) > ε0h(x0). Again, if h(x) ≤ 2h(y1) for all x ∈ B(y1; δ1) we are done with x1 := y1
and ε1 := δ1. If not then we continue: select y2 ∈ B(y1; δ1) such that h(y2) > 2h(y1), and
set δ2 := 1

2δ1, and argue as before. We claim that we must be done at some finite stage.
Indeed, if not then since the sequence δk = 2−kε0 → 0 and X is complete, the sequence
yk converges to some y. Since δkh(yk) → 0 we obtain h(y) = 0, which contradicts the
assertion that h > 0.

The next step is the following lemma.

Lemma 8.15. Suppose u ∈ M. Then there exists a constant C = C(u) such that

sup
(s,t)∈R×S1

|∇u(s, t)|J ≤ C. (8.5)
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Remark 8.16. In fact, later on we will improve Lemma 8.15 to show that the assumption
that Iω vanishes implies that one can even choose the constant C appearing in (8.9) to be
independent of u. See Lemma 8.18 below.

Proof of Lemma 8.15. Assume for contradiction there exists a sequence (sk, tk) ∈ R × S1

such that Rk := |∇u(sk, tk)|J → +∞. Let εk be a sequence such that εk → 0 and
εkRk → +∞. By Lemma 8.14, we may assume that

|∇u(s, t)|J < 2Rk, for all |(s, t)− (sk, tk)| < εk.

For (s, t) ∈ R2 ∼= C, define

vk(s, t) := uk(sk + s/Rk, tk + t/Rk).

Thus ∥vk(0, 0)∥J = 1 and

|∇vk(s, t)|J ≤ 2, for all (s, t) ∈ B(0; εkRk). (8.6)

Note that
∂svk + J(vk)∂tvk =

1

Rk
J(vk)XHtk+t/Rk

(vk).

From (8.6) we see that (vk) is equicontinuous. Compactness of Q implies that (vk) is
totally bounded, and hence by Arzela-Ascoli theorem, after passing to a subsequence we
may assume that vk converges in C0

loc to some v : C → Q. Moreover v satisfies

∂sv + J(v)∂tv = 0, (8.7)

and hence elliptic regularity implies that v is smooth. Moreover the argument from Propo-
sition 8.7 shows that vk converges to v in C∞

loc. In particular, ∥∇v(0, 0)∥J = 1. However
we also have

ˆ
C
|∂sv|2Jdsdt = lim

l→∞

ˆ
B(0;εlRl)

|∂sv|2Jdsdt

= lim
l→∞

lim
k→∞

ˆ
B(0;εlRl)

|∂svk|2Jdsdt

= lim
l→∞

lim
k→∞

ˆ
B((sl,tl);εlRl/Rk)

|∂su|2Jdsdt

= 0,

since |∇u|J is bounded. This implies that ∂sv ≡ 0, and thus from (8.7), ∂tv ≡ 0. This
contradicts |∇v(0, 0)|J = 1.

Next, we prove:

Lemma 8.17. Suppose u ∈ M and (sk) ⊂ R converges to +∞. Then there exists
x ∈ P◦

1 (H) such that (u(sk, ·)) converges in C∞(S1, Q) to x.

Proof. Lemma 8.15 implies that the sequence (u(·+sk, ·)) is equicontinuous. Compactness
of Q implies it is totally bounded, and hence the Arzela-Ascoli implies, up to passing to
a subsequence, that (u(·+ sk, ·)) converges in C0

loc to some v. Moreover elliptic regularity
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implies that v ∈ C∞(R × S1, Q) and ∂̄J,H(v) = 0. Then Proposition 8.7 implies that the
convergence is in C∞

loc, and hence

E(v) =
ˆ

R×S1

|∂sv|2Jdsdt

= lim
R→+∞

ˆ
[−R,R]×S1

|∂sv|2Jdsdt

= lim
R→+∞

lim
k→∞

ˆ
[−R,R]×S1

|∂su(s+ sk, t)|2Jdsdt

= 0,

since |∇u∥J is square integrable. Thus by Lemma 8.2, v(s, t) ≡ x(t) for some x ∈ P◦
1 (H),

which is what we wanted to prove.

We can now complete the proof of Theorem 8.11.

Proof of Theorem 8.11. It suffices to show that if u ∈ M and (sk) and (σk) are two
sequences that both converge to +∞, such that u(sk, ·) → x1 and u(σk, ·) → x2, for two
orbits x, y in P◦

1 (H), then x1 = x2. Let d denote the metric on LQ defined by

d(x, y) := sup
t∈S1

d(x(t), y(t)), (8.8)

where d is some compatible metric on M . Since P◦
1 (H) is finite, there exists ε > 0 such

that the sets B(x; ε) are mutually disjoint for x ∈ P◦
1 (H). If x1 ̸= x2 then using the

sequences (sk) and (σk), we can find sequences (ak) and (bk) such that ak, bk → +∞
and such that ak < bk < ak+1, with u(ak, ·) → x1 and u(bk, ·) → x2. For all large k we
may assume that u(ak, ·) ∈ B(x1; ε) and u(bk, ·) ∈ B(x2; ε). Since these sets are pairwise
disjoint, it follows that we can find a sequence ak < ck < bk such that

uk(ck, ·) /∈
∪

x∈P◦
1 (H)

B(x; ε), for all k ∈ N.

Since ck → +∞, this contradicts Lemma 8.17.

This completes the proof of Theorem 8.11. We will now prove the No bubbling Theo-
rem, Theorem 8.8. The argument is an elaboration of the one from Lemma 8.15. Namely,
let us first show:

Lemma 8.18. Then there exists a constant C > 0 such that for all u ∈ M, one has

sup
(s,t)∈R×S1

|∇u(s, t)|J ≤ C. (8.9)

Proof. We apply exactly the same argument as in the proof of Lemma 8.15, only starting
with a sequence (sk, tk) such that Rk := |∇uk(sk, tk)|J → +∞. Again we obtain a non-
constant map v ∈ C∞(C, Q) satisfying ∂sv + J(v)∂tv = 0; the only difference is that
this time we cannot conclude that E(v) = 0. However we certainly have E(v) < +∞; for
instance we have

E(v) ≤ sup
k∈N

E(uk) ≤ max
x−,x+∈P◦

1 (H)
AH(x−)− AH(x+),

where the second inequality uses Lemma 8.2. The proof of Lemma 8.18, and hence of
Theorem 8.8, is thus completed by the following corollary.
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Lemma 8.19 (No bubbling). Let (Q,ω) be a closed symplectic manifold such that Iω :
π2(Q) → R is zero. Fix J ∈ J (Q,ω). Then there exist no non-constant J-holomorphic
maps v : C → Q with finite energy.

Proof. Suppose v is such a map. We build a new map w : S2 → Q such that Iω([w]) ̸= 0.
First define a new map u : R × S1 → Q by

u(s, t) := v(e2π(s+it)).

Then u is J-holomorphic and E(u) < +∞. The argument from Lemma 8.17 (applied with
H = 0) tells us that there exists two points q−, q+ ∈ Q such that

lim
s→±∞

u(s, t) ≡ q±

(since P◦
1 (H = 0) is the set of constant maps). Thus if we consider a smooth map

ζk : D → Q such that ζk(e2πit) = u(k, t) then

lim
k→+∞

ˆ
D
ζ∗kω = 0. (8.10)

We can glue v|B(0;e2πk and ζk together to obtain a map wk : S2 = C ∪ {+∞} → Q which
is smooth away from ∂B(0; e2πk) and has one-sided derivative in the direction normal to
this circle. Then

0 = Iω[wk]

=

ˆ
B(0;e2πk)

v∗ω −
ˆ

D
ζ∗kω

Thus from (8.10), we see that in fact
´
C v

∗ω = 0. To complete the proof one uses the
following simple exercise.

Exercise 8.20. Suppose v ∈ C∞(C, Q) is J-holomorphic for some J ∈ J (Q,ω). Then
ˆ

C
v∗ω =

ˆ
C
|∂sv|2J .

Let us now move to studying the quotient spaces M(x−, x+) in more detail. We equip
M(x−, x+) with quotient topology. Let us denote by u an element of M(x−, x+). Thus
given a sequence uk ∈ M(x−, x+), we have

uk → u ∈ M(x−, x+) ⇐⇒

{
∃uk ∈ uk and u ∈ u, ∃ (sk) ⊂ R,

uk(·+ sk, ·) → u, in C∞
loc(R × S1, Q).

Proposition 8.21. Suppose x− and x+ are two distinct elements of P◦
1 (H). Suppose

(uk) ⊂ M(x−, x+) has two subsequences which converge to elements u ∈ M(x−, y) and
v ∈ M(x−, z). Then u = v. In particular, y = z.

Proof. Up to passing to a subsequence, there exists a sequence (uk) ⊂ M(x−, x+) and
two sequences (sk), (σk) ⊂ R such that

lim
k→+∞

uk(·+ sk, ·) = u ∈ M(x−, y), lim
k→+∞

uk(·+ σk, ·) = v ∈ M(x−, z).
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Select a, ε > 0 such that

AH(x−)− ε > a > max
{
AH(x+),AH(y),AH(z)

}
.

Suppose that the sequence |sk − σk| is not bounded. Then without loss of generality we
may assume that sk = 0 and σk → +∞. Since v ∈ M(x−, z), there exists s0 ∈ R such
that

s ≤ s0 ⇒ AH(v(s, ·)) > AH(x−)− ε.

Since uk(s0 + σk, ·) converges to v(s0, ·), for all k sufficiently large, one also has

AH(uk(s0 + σk, ·)) > AH(x−). (8.11)

However since u ∈ M(x−, y), there exists s1 ∈ R such that

s ≥ s1 ⇒ AH(u(s, ·)) < a.

Since sk = 0 by assumption, we have that for all k sufficiently large,

AH(uk(s1, ·)) ≤ a+ ε. (8.12)

Since σk → +∞, for k sufficiently large one has s0 + σk > s1, and for such k, (8.11)
and (8.12) are mutually incompatible. Thus |sk − σk| is necessarily a bounded sequence,
and hence after passing to a subsequence we may assume σk − sk → s0. Since for any
fixed s ∈ R the sequence s + σk − sk is contained in a compact subset of R, we see that
uk(s+ σk, ·) converges to both v(s, ·) and u(s+ s0, ·). This completes the proof.

With these preparations complete, we can now mimic the construction from Definition
1.24 in the Floer setting.

Definition 8.22. A sequence (uk)k∈N ⊂ M(x−, x+) is said to converge up to breaking if
there exist

1. elements x = x0, x1, . . . , xm = x+ in P◦
1 (H),

2. flow lines uj ∈ M(xj−1, xj) for 1 ≤ j ≤ m,

3. sequences (sjk)k∈N for 1 ≤ j ≤ m with sj−1
k < sjk and with sjk − sj−1

k → +∞ for each
k ∈ N and each 1 ≤ j ≤ m,

with the following property: For any compact interval I ⊂ R, after passing to a subse-
quence, the sequence uk(·+ sjk, ·) converges in C∞

loc to uj(·). In this case we say that (uk)
converges to the broken gradient flow line (u1, . . . , um) and we write

uk ⇝ (u1, . . . , um).

Similarly we say that a sequence (uk) ⊂ M(x−, x+) converges to the broken gradient
flow line (u1, . . . , um), written

uk ⇝ (u1, . . . , um),

if there exist representatives uk ∈ uk and uj ∈ uj such that uk ⇝ (u1, . . . , um).
Note that if there exists a sequence (uk) ⊂ M(x−, x+) that converges to a broken

flow line (u1, . . . , um) then necessarily CZ(x−) − CZ(x+) ≥ m + 1. Indeed, one has uj ∈
M(xj−1, xj) for some critical points x = x0, . . . , xm = y, and then CZ(xj−1)−CZ(xj) ≥ 1
for each 1 ≤ j ≤ m (cf. Corollary 8.3). We now state the full compactness result for Floer
flow lines; contrast this to Theorem 1.26.

75



Theorem 8.23 (Compactness). Suppose x−, x+ are elements of P◦
1 (H) which satisfy

CZ(x−) = CZ(x+) +m+ 1

for some m ≥ 0. Then M(x−, x+) is compact up to m-fold breaking in the following sense:
suppose (uk) ⊂ M(x−, x+) has no convergent subsequence. Then there exists a broken
gradient trajectory (u1, . . . , ul) for some l ≤ m such that after passing to a subsequence,
uk ⇝ (u1, . . . , ul). In particular, if m = 0 then every sequence in M(x−, x+) has a
convergent subsequence.

Proof. Recall from the proof of Theorem 8.11 that we can choose ε > 0 such that the balls
B(x; ε) for x ∈ P◦

1 (H) are all disjoint, where the balls are taken with respect to the metric
(8.8). Suppose (uk) ⊂ M(x−, x+). Since the hypotheses imply that x− ̸= x+, there exists
a well defined finite number

s1k := inf
{
s ∈ R | d(uk(s, ·), x−) > ε

}
. (8.13)

Since M is compact, up to passing to a subsequence we may assume that uk(· + s1k, ·)
converges to some u1 ∈ M. It follows from (8.13) that u1(s, ·) ∈ B̄(x−; ε) for all s ≤ 0,
and u1(0, ·) ∈ ∂B(x−; ε). Thus u1 ∈ M(x−, x1) for some x1 ∈ P◦

1 (H). If x1 = x+, we are
done (with l = 1).

Let us now assume for some 1 ≤ p ≤ m we have found sequence (sjk) for 1 ≤ j ≤ p and
flow lines uj ∈ M(xj−1, xj) for 1 ≤ j ≤ p such that xp ̸= x+ and such that uk(· + sjk, ·)
converges to uj in C∞

loc for each 1 ≤ j ≤ p. Since up ∈ M(xp−1, xp), there exists s̄ ∈ R
such that for all s ≥ s̄, one has uk(s, ·) ∈ B(xp; ε). Thus for all k sufficiently large, we
have uk(spk + s̄, ·) ∈ B(xp; ε). But since by assumption xp ̸= x+ and uk ∈ M(x−, x+),
there exists a well-defined finite number

sp+1
k := sup

{
s ≥ spk + s̄ | uk(σ, ·) ∈ B(xp; ε) for all σ ∈ [spk,+s̄, s]

}
. (8.14)

Compactness of M implies that, up to passing to a subsequence, uk(·+ sp+1
k , ·) converges

to some up+1 ∈ M. Note that necessarily sp+1
k − spk → +∞. Indeed, if not then there

exists a compact subset of R containing the interval [s̄, sp+1
k − spk] for all k. For each

s ∈ [s̄, sp+1
k − spk] we have uk(s+ spk, ·) ∈ B(xp; ε), and since we have C∞

loc-convergence, this
implies uk(sp+1

k , ·) ∈ B(xp; ε), which contradicts (8.14).
To complete the proof we must show there exists an orbit xp+1 ̸= xp such that up+1 ∈

M(xp, xp+1). Fix s < 0. Then for k sufficiently large, we have

spk + s̄ < sp+1
k + s < sp+1

k ,

and thus uk(sp+1
k + s, ·) ∈ B(xp; ε) by (8.14). Thus we have

up+1(s, ·) ∈ B(xp; ε), for all s < 0.

Moreover up+1(0, ·) ∈ ∂B(xp; ε), and hence up+1 exits the ball B(xp; ε). The result follows.

We now move onto the converse of this result. The reader should contrast the next
result with Theorem 1.27. Whilst essentially the complete analogue of that result is true,
we will content ourselves with only stating what we need in order to deduce that ∂ ◦∂ = 0.
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Theorem 8.24 (Gluing). Suppose x−, x0, x+ are elements of P◦
1 (H) such that

CZ(x−) = CZ(x0) + 1 = CZ(x+) + 2.

Suppose that (u, v) ∈M(x−, x0)×M(x0, x+). Then there exists ρ0 > 0 and a differentiable
map

ψ : [ρ0,+∞) → M(x−, x+)

such that the induced map

Ψ : [ρ0,+∞) → M(x−, x+)

is an embedding with the following two properties:

1. Ψ(ρ) converges to the broken flow line (u, v) as ρ→ +∞,

2. if wk ∈ M(x−, x+) converges to the broken flow line (u, v) as k → +∞ then for all
k sufficiently large there exists ρk such that wk = Ψ(ρk).

We conclude this section with two simple exercises.

Exercise 8.25. Prove Theorem 8.24. Hint: In the unlikely event that you find this
challenging, consult [AD10, p280324 and p433468]. NB: The fact that I am setting this
as an exercise has got absolutely nothing5 to do with the fact that I really don’t want to
have to lecture this proof.

Exercise 8.26. Use Theorem 8.24 to prove that ∂ ◦ ∂ = 0 in Floer homology. Hint: The
proof is identical to Corollary 1.31.

5This is a lie.
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CHAPTER 9

Invariance of Floer homology
In this chapter we will show that the Floer homology groups HF∗(H, J) := H∗(CF∗(H), ∂J)
are independent of both the choice of non-degenerate Hamiltonian H and the almost
complex structure J . We then discuss briefly how to construct the Floer complex in the
Morse-Bott setting. This allows us to define HF∗(H, J) for Hamiltonians such that the
action functional AH is Morse-Bott (cf. Definition 1.42) rather than Morse, and again the
Floer homology is independent of such H. It is easy to see that H ≡ 0 is Morse-Bott,
and moreover it follows essentially from the definition that HF∗(0, J) ∼= Hn+∗(Q;Z2). In
conclusion we obtain that HF∗(H, J) ∼= Hn+∗(Q;Z2) for all non-degenerate Hamiltonians,
which completes the proof of Theorem 2.25.

Definition 9.1. Let us denote by HJ reg ⊂ C∞(S1×Q)×J (Q,ω) the set of pairs (H, J)
such that every element of P◦

1 (H) is non-degenerate, and such that for any two orbits
x−, x+ belonging to P◦

1 (H) and any u ∈ M(x−, x+), the vertical derivative Dv∂̄J,H(u) is
surjective. We call such a pair (H, J) a regular pair.

So far we have constructed the Floer complex HF∗(H, J) for any regular pair. Since
both C∞(S1 × Q) and J (Q,ω) are path connected, if (H−, J−) and (H+, J+) are two
regular pairs then we can find a path in C∞(S1 × Q) × J (Q,ω) connecting them. In
general however such a path will not belong to HJ reg. We will be interested in paths of
a certain form.

Definition 9.2. Suppose (H±, J±) are two regular pairs. An aymptotically constant path
connecting (H−, J−) to (H+, J+) is a smooth path

χ : R → C∞(S1 ×Q)× J (Q,ω), χ(s) = (Hs, Js)

such that there exists T > 0 such that

χ(s) =

{
(H−, J−), s ≤ −T,
(H+, J+), s ≥ T.

(9.1)

In Definition 9.10 below we will introduce the notion of a regular asymptotically con-
stant path. Here is the first main result of this chapter.

Theorem 9.3 (Continuation maps). Suppose (H±, J±) ∈ HJ reg are two regular pairs,
and suppose χ is a regular asymptotically constant path connecting (H−, J−) to (H+, J+).
Then there is a well defined chain map

Φχ : CF∗(H
−) → CF∗(H

+), Φχ ◦ ∂J− = ∂J+ ◦ Φχ,

inducing a map
ϕχ : HF∗(H

−, J−) → HF∗(H
+, J+).

Moreover if (H0, J0) is another regular pair, and χ0 and χ1 are regular asymptotically
constant paths connecting (H−, J−) to (H0, J0) and (H0, J0) to (H+, J+) respectively,
then the induced maps satisfy

ϕχ = ϕχ0 ◦ ϕχ1 . (9.2)

Finally, if (H−, J−) = (H+, J+) and χ is a constant path then this path is regular and
the chain map Φχ is the identity.
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The next corollary is immediate from Theorem 9.3.

Corollary 9.4 (Invariance of Floer homology). Suppose (H±, J±) ∈ HJ reg are two
regular pairs.

1. For any regular asymptotically constant path χ connecting (H−, J−) to (H+, J+),
the induced map ϕχ : HF∗(H

−, J−) → HF∗(H
+, J+) depends only on the pair

(H±, J±) and not on the path χ.

2. The map ϕχ : HF∗(H
−, J−) → HF∗(H

+, J+) is an isomorphism.

Exercise 9.5. Prove Corollary 9.4 (assuming Theorem 9.3!).

Remark 9.6. In fact, a slightly stronger result is true. IfH− = H+ = H and χ(s) = (H, Js)
only changes the almost complex structure J then the chain map Φχ : CF∗(H) → CF∗(H)
is an isomorphism of chain complexes. Explicitly this means that the matrix representing
the chain map Φχ is upper triangular with 1’s on the diagonal. In other words. More
precisely, the map has the form

Φχ⟨x⟩ =
∑

y∈P◦
1 (H),CZ(x)=CZ(y)

nχ(x, y)⟨y⟩,

where
nχ(x, x) = 1, nχ(x, y) = 0 if AH(x) ≤ AH(y) and x ̸= y. (9.3)

Thus whilst at the level of homology the Floer complex is independent of both the Hamil-
tonian and the almost complex structure, the Floer complex is independent (up to an
isomorphism of chain complexes) of the almost complex structure at the chain level. This
explains why in our notation we will often write HF∗(H) and omit the J , despite the fact
that HF∗(H, J) is independent of both H and J . This will be particular important in the
non-compact setting below. For instance, as we will see, in the case Q = T ∗B, it is no
longer true that HF∗(H, J) is independent of H, but it is still that true that HF∗(H, J)
is independent of J .

Suppose now that (H±, J±) ∈ HJ reg are two regular pairs, and suppose χ is an
asymptotically constant path connecting (H−, J−) to (H+, J+). Fix x− ∈ P◦

1 (H
−) and

x+ ∈ P◦
1 (H

+). We define the Banach bundle Ep → B1,p(x−, x+) in exactly the same way
as before (cf. Definition 4.4.)

Definition 9.7. We define a section

∂̄χ : B1,p(x−, x+) → Ep

by setting
∂̄χ(u) := ∂su+ Js(u)(∂tu)− Js(u)XHs

t
(u).

We write Nχ(x
−, x+) for the zero set of ∂̄χ.

The next two results are the key to defining the chain map Φχ.

Theorem 9.8. Suppose that (H±, J±) ∈ HJ reg are two regular pairs, and suppose χ is an
asymptotically constant path connecting (H−, J−) to (H+, J+). Then vertical derivative
Dv∂̄χ(u) at a zero u ∈ Nχ(x

−, x+) is a Fredholm operator of index CZ(x−)− CZ(x+).

The proof of Theorem 9.8 is essentially identical to the proof in the s-independent
case (cf. Theorem 6.24). Thus we will say no more about it. The conscientious reader is
however invited to:
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Exercise 9.9. Prove Theorem 9.8.

Definition 9.10. Let us say that an asymptotically constant path χ is an asymptotically
constant path connecting (H−, J−) to (H+, J+) is regular if for all x± ∈ P◦

1 (H
±), and all

u ∈ Nχ(x
−, x+), the vertical derivative Dv∂̄χ(u) is surjective.

It follows from Theorem 9.8 that if χ is a regular asymptotically constant path connect-
ing (H−, J−) to (H+, J+) then the moduli space Nχ̃(x

−, x+) are manifolds of dimension
CZ(x−) − CZ(x+). Note that the moduli spaces Nχ(x

−, x+) are not invariant under a
translation R-action, and hence it doesn’t make sense to try and form the quotient spaces
Nχ(x

−, x+)/R. This explains why the chain map Φχ has degree 0, whereas the boundary
operator had degree −1.

Theorem 9.11. Suppose now that (H±, J±) ∈ HJ reg are two regular pairs, and suppose
χ is an asymptotically constant path connecting (H−, J−) to (H+, J+). For any ε > 0
there exists a regular asymptotically constant path χ̃(s) = (H̃s, Js) connecting (H−, J−)
to (H+, J+) such that ∥Hs − H̃s∥C∞(S1×Q) < ε for all s ∈ R.

Remark 9.12. The proof of Theorem 9.11 is actually much easier than the proof oin the s-
independent case (cf. Theorem 7.2). Why is this? The strategy of the proof if exactly the
same as before, and just as in (7.3), one is led to needing to prove that if ŵ ∈ Lq(u∗TQ)
satisfies ˆ

R

ˆ
S1

dĤs
t (u)[ŵ]dtds = 0

for all Hamiltonians Ĥs
t then ŵ is identically zero. But this time we are allowed to take

Ĥ to depend on s! Specifically, Ĥ is required to be a tangent vector to an asymptotically
constant path Hs connecting H− and H+. This makes the argument much easier: if
ŵ(s0, t0) ̸= 0 then we may assume that ŵ(s, t) > 0 for all (s, t) near (s0, t0) (since elliptic
regularity tells us that ŵ is continuous). One can then choose a function Ĥ supported in
a neighborhood of (s0, t0) such that

ˆ
R

ˆ
S1

dĤs
t (u)[ŵ]dtds > 0,

thus obtaining a contradiction immediately.

Exercise 9.13. Convince yourselves that I am not lying when I say Theorem 9.11 is much
easier by supplying a full proof.

Whilst transversality is easier, conversely compactness is slightly more subtle in the
s-dependent case than it was in the s-independent case. Let us first examine how the
energy behaves in this situation. As before we denote by N ♯

χ the space of all solutions of
∂̄χ(u) = 0.

N ♯
χ :=

{
u ∈ C∞(R × S1, Q) | u(s, ·) ∈ LQ, ∀ s ∈ R, ∂̄χ(u) = 0

}
. (9.4)

Definition 9.14. This time we define the energy E : N ♯
χ → [0,+∞] by:

E(u) :=
ˆ +∞

−∞
⟨⟨∂su, ∂su⟩⟩ds.
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Suppose that T > 0 is such that (9.1) holds. Then this time we have

E(u) = −
ˆ +∞

−∞
dAHs(u(s, ·)[∂su(s, ·)]ds

= −
ˆ +∞

−∞

d

ds
AHs(u(s, ·))ds−

ˆ +∞

−∞

ˆ
S1

∂Hs
t

∂s
(u(s, t))dtds

=

ˆ +∞

−∞
⟨⟨∂su, ∂su⟩⟩ds−

ˆ T

−T

ˆ
S1

∂Hs
t

∂s
(u(s, t))dtds

≤ AH−(x−)− AH+(x+) + ∆(Hs)

where
∆(Hs) = sup

s∈[−T,T ]
sup
t∈S1

sup
q∈Q

∣∣∣∣∂Hs
t

∂s
(q)

∣∣∣∣ .
As before we denote by Nχ the subset of N ♯

χ with finite energy, and then we have the
following analogue of Theorem 8.8.

Theorem 9.15. The space Nχ is compact in C∞
loc(R × S1, Q).

The reader should have no difficulty in checking that the proof of Theorem 8.8 goes
through without change:

Exercise 9.16. Prove Theorem 9.15.

Let us now state and prove the analogue of Theorem 8.23.

Theorem 9.17. Suppose (H±, J±) ∈ HJ reg are two regular pairs, and suppose χ is a
regular asymptotically constant path connecting (H−, J−) to (H+, J+). Fix x± ∈ P◦

1 (H
±)

and suppose that
CZ(x−)− CZ(x+) = m.

Suppose (uk) ⊂ Nχ(x
−, x+) has no convergent subsequence. Then necessarily m ≥ 1, and

there exist:

1. integers q, p ∈ N ∪ 0 such that 1 ≤ q + p ≤ m ,

2. if q ≥ 1:

• elements x− = y0, . . . , yq of P◦
1 (H

−),
• sequences sjk of real numbers, for 1 ≤ j ≤ q such that sjk → −∞ and such that
sj+1
k − sjk → −∞,

• flow lines uj ∈ M(H−,J−)(y
j , yj+1) for 1 ≤ j ≤ q,

3. if p ≥ 1:

• elements z0, . . . , zp = x+ of P◦
1 (H

+),
• sequences σjk of real numbers, for 1 ≤ j ≤ p such that σjk → +∞ and such that
σj+1
k − σjk → +∞,

• flow lines vj ∈ M(H+,J+)(z
j , zj+1) for 1 ≤ j ≤ p,

such that after passing to a subsequence, one has

lim
k→+∞

uk(·+ sjk, ·) = uj in C∞
loc(R × S1, Q), for 1 ≤ j ≤ q,

lim
k→+∞

uk(·+ σjk, ·) = vj in C∞
loc(R × S1, Q), for 1 ≤ j ≤ p,
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We begin with a lemma. As was implicit in the statement of Theorem 9.17, in what
follows we denote by M(H±,J±) the space M (as defined in Definition 8.6) for the regular
pair (H±, J±).

Lemma 9.18. Suppose (uk) ⊂ Nχ(x
−, x+) and (sk) ⊂ R is a sequence such that sk →

+∞. Then after passing to a subsequence, there exists v ∈ M(H+,J+) such that uk(· +
sk, ·) converges to v in the C∞

loc-topology. If instead sk → −∞ then after passing to
a subsequence there exists v ∈ M(H−,J−) such that uk(· + sk, ·) converges to v in the
C∞
loc-topology.

Proof. Recall from Exercise 9.166 that there exists a constant C > 0 such that |∇uk(s, t)|Js ≤
C for all (s, t) ∈ R and all k ∈ N. Thus the sequence (uk) is equicontinuous, and since
Q is compact, we can again apply the Arzela-Ascoli theorem to deduce that the sequence
uk(· + sk, ·) has a subsequence which converges in C0

loc to some map v ∈ C0(R × S1, Q).
The usual elliptic regularity results imply that v is of class C∞. It remains to check
that v ∈ M(H+,J+). Since χ is asymptotically constant, there exists T > 0 such that
χ(s) = (H+, J+) for all s ≥ T . Fix a compact subset I ⊂ R. There exists k0 > 0 such
that if k ≥ k0 and s ∈ I then s+ sk > T . Thus for all k ≥ k0 the curve vk := uk(·+ sk, ·)
satisfies

∂svk + J+(vk)∂tvk − J+(vk)XH+
t
(vk) = 0, on I × S1.

It follows that the limit v satisfies ∂̄J+,H+(v) = 0 on I × S1. Since I was arbitrary, we
see that v ∈ M♯

(H+,J+)
. Finally since E(uk) < +∞ for each k, it easily follows that

E(v) < +∞, and hence v ∈ M(H+,J+).

Here is an easy exercise.

Exercise 9.19. Suppose u ∈ Nχ. Show there exists x± ∈ P◦
1 (H

±) such that

lim
s→±∞

u(s, ·) = x±

in C∞(S1, Q). Hint: Since χ is asymptotically constant, the proof is exactly the same as
the proof of Lemma 8.17.

We can now complete the proof of Theorem 9.17.

Proof of Theorem 9.17. Recall from the proof of Theorem 8.11 that we can choose ε > 0
such that the balls B(y; ε) for y ∈ P◦

1 (H
−) are all disjoint, where the balls are taken with

respect to the metric (8.8). Up to shrinking ε we can also assume that all the balls B(z; ε)
for z ∈ P◦

1 (H
+) are also all disjoint. Since Theorem 9.15 tells us that the space Nχ is

compact, there exists w ∈ Nχ such that uk → w. By Exercise 9.19 there exists two orbits
y ∈ P◦

1 (H
−) and z ∈ P◦

1 (H
+) such that w ∈ Nχ(y, z). Then there exists s̄ ∈ R such that

w(s, ·) ∈ B(z; ε) for all s ≥ s̄. Thus for all k sufficiently large, we have uk(s̄, ·) ∈ B(z; ε).
If z ̸= x+ then since uk ∈ Nχ(x

−, x+), there is a well defined finite number

σk := sup {s ≥ s̄ | uk(σ, ·) ∈ B(z; ε) for all σ ∈ [s̄, s]}

(compare (8.14)). Suppose that σk is bounded. Then we may assume that σk → σ0 for
some σ0 ∈ R. Since the convergence of uk to w is in C∞

loc, it would then follow that
limk→+∞ uk(σk, ·) = w(σ0, ·). Since necessarily σ0 ≥ s̄, this would imply that

lim
k→+∞

uk(σk, ·) ∈ B(z; ε).

6Or more realistically, given that you clearly didn’t do the exercise, from the proof of Lemma 8.18.
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But this contradicts the definition of σk: by definition uk(σk, ·) ∈ ∂B(z; ε). Thus σk →
+∞. Then we can apply Lemma 9.18 to see that there exists v ∈ M(H+,J+) such that

lim
k→+∞

uk(·+ σk, ·) = v0.

If s < 0 then for k large enough we have s̄ < s+σk < σk and hence uk(s+σk, ·) ∈ B(z; ε).
Thus v0(s, ·) ∈ B(z; ε) for all s < 0. By Theorem 8.11, we have that v0 ∈ M(H+,J+)(z, z

1)
for some critical point z1 ∈ P◦

1 (H
+). Now arguing exactly as in the proof of Theorem

8.23 we see that we can continue this finitely many times, finding new flow lines vj ∈
M(H+,J+)(z

j , zj+1) and sequences σjk such that uk(·+σjk, ·) converges to vj , until eventually
we obtain zp = x+ for some p. Next we examine the other limit. Since w ∈ Nχ(y, z),
there exists s ∈ R such that w(s, ·) ∈ B(y; ε for all s ≤ s. Thus for all k sufficiently large
we have uk(s, ·) ∈ B(y; ε). If y ̸= x− then since uk ∈ Nχ(x

−, x+), there is a well defined
finite number

sk := inf {s ≤ s | uk(s, ·) ∈ B(y; ε)}

Then as above one shows that sk → −∞, and then applying Lemma 9.18 again tells
us that uk(· + sk, ·) converges to some u ∈ M(H−,J−). Then as above we see that u ∈
M(H−,J−)(y

′, y) for some orbit y′, and finally the argument from Theorem 8.23 supplies
the required broken flow line whose final limit y0 = x−. This completes the proof.

Now let us state the corresponding gluing result.

Theorem 9.20 (Gluing). Suppose x− ∈ P◦
1 (H

−) and x0, x+ are elements of P◦
1 (H

+)
such that

CZ(x−) = CZ(x0) = CZ(x+) + 1.

Suppose u ∈ Nχ(x
−, x0) and v ∈ M(H+,J+)(x

0, x+). Then there exists ρ0 > 0 and a
differentiable an embedding

ψ : [ρ0,+∞) → Nχ(x
−, x+)

such that:

1. ψ(ρ) converges (in the sense described by Theorem 9.17) to the broken flow line
(u, v) as ρ→ +∞, where v ∈ v.

2. if wk ∈ Nχ(x
−, x+) converges to a pair (u, v) as k → +∞ for some v ∈ v then for all

k sufficiently large there exists ρk such that wk = ψ(ρk).

Following in the tradition of Exercise 8.25, we leave the proof of Theorem 9.20 as an
exercise for the masochistic reader:

Exercise 9.21. Prove Theorem 9.20. Then do it again, this time with your eyes closed.

We are now in a position to define the map Φχ : CF∗(H
−) → CF∗(H

+), and to prove
that it is a chain map, that is,

Φχ ◦ ∂J− = ∂J+ ◦ Φχ.

The reader should compare this to Theorem 1.28 in Morse theory.
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Theorem 9.22. Suppose x− ∈ P◦
1 (H

−) and x+ ∈ P◦
1 (H

+) with CZ(x−) = CZ(x+) +
1. Then the boundary ∂Nχ(x−, x+) of the compactification Nχ(x−, x+) of the one-
dimensional manifold Nχ(x

−, x+) can be identified as:

∂Nχ(x−, x+) =

 ∪
y−∈P◦

1 (H
−),CZ(y−)=CZ(x−)−1

M(H−,J−)(x
−, y−)×Nχ(y

−, x+)


∪

 ∪
y+∈P◦

1 (H
+),CZ(y+)=CZ(x−)

Nχ(x
−, y+)×M(H+,J+)(y

+, x+)

 .

Exercise 9.23. Use Theorem 9.17 and Theorem 9.20 to prove Theorem 9.22.

We now define for x− ∈ P◦
1 (H

−) and x+ ∈ P◦
1 (H

+) satisfying CZ(x−) = CZ(x+) the
number

nχ(x
−, x+) := #2Nχ(x

−, x+),

and then define
Φχ : CFk(H

−) → CFk(H
+)

by setting
Φχ

⟨
x−
⟩
:=

∑
x+∈P◦

1 (H
+),CZ(x+)=k

nχ(x
−, x+)

⟨
x+
⟩
, (9.5)

and then extending by linearity.

Exercise 9.24. Use Theorem 9.22 to prove that the map Φχ defined in (9.5) really is a
chain map.

Lemma 9.25. Suppose (H−, J−) = (H+, J+) = (H, J) and χ(s) ≡ (H, J) for all s ∈ R.
Then the chain map Φχ is the identity (on the chain level).

Proof. In this case one has Nχ(x
−x+) = M(H,J)(x

−, x+). By Corollary 8.3, if CZ(x−) =
CZ(x+) then the moduli space M(H,J)(x

−, x+) can be non-empty only when x− = x+, in
which case it contains precisely one element: the constant solution u(s, t) ≡ x−(t).

Exercise 9.26. Use a similar argument to prove the claim made in Remark 9.6: if χ(s) =
(H, Js) then the map Φχ is upper triangular with 1’s on the diagonal, that is, (9.3) holds.

To complete the proof of Theorem 9.3 we need to prove that the induced map ϕχ :
HF∗(H

−, J−) → HF∗(H
+, J+) is independent of the asymptotically constant path χ and

satisfies the functoriality property (9.2). This requires us to build a homotopy of homo-
topies, as we now describe.

Suppose that X := {χr}0≤r≤1 is a path of asymptotically constant paths whose asymp-
totes are independent of r, say from (H−, J−) to (H+, J+). Thus we have two chain maps

Φχ0 : CF∗(H
−) → CF∗(H

+),

Φχ1 : CF∗(H
−) → CF∗(H

+),

We would like to prove that these two maps are chain homotopic, that is, there exists a
map

PX : CF∗(H
−) → CF∗+1(H

+) (9.6)
such that

Φχ1 − Φχ0 = PX ◦ ∂J− + ∂J+ ◦ PX . (9.7)
Let us write χr(s) = (Hr,s, Jr,s). Assume T > 0 is such that χr(s) is independent of both
r and s (and equal to (H±, J±)) for |s| ≥ T .
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Definition 9.27. Fix orbits x± ∈ P◦
1 (H

±) and consider the space OX (x
−, x+) of pairs

OX (x
−, x+) :=

{
(u, r) | u ∈ Nχr(x

−, x+)
}
. (9.8)

Thus if π : OX (x
−, x+) → [0, 1] denotes the projection π(u, r) = r then π−1(r) is the

moduli space Nχr(x
−, x+).

Our aim is to show that OX (x
−, x+) is a cobordism between the manifolds Nχ0(x

−, x+)
and Nχ1(x

−, x+). For this, the first step is to show that OX (x
−, x+) is indeed a manifold

of dimension one more than that of Nχ0(x
−, x+) and Nχ1(x

−, x+) (so that the notion of
cobordism makes sense). The proof of this assertion is similar to the proof of Theorem
9.8 and Theorem 9.11, and we content ourselves here with stating the result.

Theorem 9.28. Suppose that (H±, J±) ∈ HJ reg are two regular pairs, and suppose χ0

and χ1 are two asymptotically constant regular paths connecting (H−, J−) to (H+, J+).
Suppose moreover that X = {χr}0≤r≤1 is a path of asmyptotically constant paths con-
necting χ0 to χ1. Write χr = (Hr,s, Jr,s). Then for any ε > 0 there exists a new path
X̃ = {χ̃r} such that:

1. χ̃0 = χ0 and χ̃1 = χ1,

2. χ̃r is of the form (H̃r,s, Jr,s) (i.e. we are only perturbing the Hamiltonian),

3. ∥Hr,s − H̃r,s∥C∞(S1×Q) < ε for all (r, s) ∈ [0, 1]× R.

4. For every pair of orbits x± ∈ P◦
1 (H

±), the spaces OX (x
−, x+) are manifolds with

boundary of dimension CZ(x−)− CZ(x+) + 1, whose boundary is precisely

∂OX (x
−, x+) =

(
Nχ0(x

−, x+)× {0}
)
∪
(
Nχ1(x

−, x+)× {1}
)
. (9.9)

Exercise 9.29. Prove Theorem 9.28. Hint: See for instance [AD10, Section 11.3.b] if you
get stuck. However you should not get stuck, since this is easy. By now we have proved
so many similar results I’m sure you can all do this in your sleep. It should be a bit like
rereading a familiar old book, or perhaps like dating an old ex again. Everything should
be comfortably familiar, with no nasty surprises.

Unsurprisingly, we say that a path X which satisfies the conclusions of Theorem 9.28
is a regular path of asymptotically constant paths. Next we discuss compactness. Let us
denote by OX the space of all finite energy flow lines:

OX =
∪

r∈[0,1]

(Nχr × {r}) =
∪

x±∈P◦
1 (H

±)

Nχr(x
−, x+).

Since the interval [0, 1] is compact, the proof of the next result is no harder than that of
Theorem 9.15.

Theorem 9.30. There exists a constant C > 0 such that E(u) ≤ C for all (u, r) ∈ OX .
The space OX is compact in the C∞

loc-topology.

Similarly we have the following analogue of Lemma 9.18.

Lemma 9.31. Fix x± ∈ P◦
1 (H

±) and suppose we are given a sequence (uk, rk) ⊂ OX .
Let (sk) ⊂ R denote a sequence of real numbers such that sk → +∞. Then, after possibly
passing to a subsequence, there exists (v, r∗) ∈ Nχ1 × [0, 1] such that rk → r∗ and such
that uk(· + sk, ·) converges in C∞

loc(R × S1, Q) to v. Similarly if σk → −∞ then (up to a
subsequence) there exists (w, r∗) ∈ Nχ0×[0, 1] such that rk → r∗ and such that uk(·+σk, ·)
converges in C∞

loc(R × S1, Q) to w.
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Exercise 9.32. Prove Lemma (9.31), by arguing in the same way as the proof of Lemma
9.18, and using the fact that [0, 1] is compact.

Next we present the analogue of Theorem 9.17.

Theorem 9.33. Suppose (H±, J±) ∈ HJ reg are two regular pairs, and suppose X =
{χr}0≤r≤1 is a regular path of asymptotically constant paths connecting (H−, J−) to
(H+, J+). Fix x± ∈ P◦

1 (H
±) and suppose that

CZ(x−)− CZ(x+) + 1 = m.

Suppose (uk, rk) ⊂ OX (x
−, x+) has no convergent subsequence. Then necessarily m ≥ 1,

and there exist:

1. integers q, p ∈ N ∪ 0 such that 1 ≤ q + p ≤ m ,

2. if q ≥ 1:

• elements x− = y0, . . . , yq of P◦
1 (H

−),
• sequences sjk of real numbers, for 1 ≤ j ≤ q such that sjk → −∞ and such that
sj+1
k − sjk → −∞,

• flow lines uj ∈ M(H−,J−)(y
j , yj+1) for 1 ≤ j ≤ q,

3. if p ≥ 1:

• elements z0, . . . , zp = x+ of P◦
1 (H

+),
• sequences σjk of real numbers, for 1 ≤ j ≤ p such that σjk → +∞ and such that
σj+1
k − σjk → +∞,

• flow lines vj ∈ M(H+,J+)(z
j , zj+1) for 1 ≤ j ≤ p,

4. an element (w, r∗) ∈ OX (y
q, z0),

such that after passing to a subsequence, one has

lim
k→+∞

uk(·+ sjk, ·) = uj in C∞
loc(R × S1, Q), for 1 ≤ j ≤ q,

lim
k→+∞

uk(·+ σjk, ·) = vj in C∞
loc(R × S1, Q), for 1 ≤ j ≤ p,

and finally such that
lim

k→+∞
(uk, rk) = (w, r∗).

Exercise 9.34. Prove Theorem 9.33, and then (you know you want to) state and prove
a suitable gluing theorem.

The previous results imply the following statement:

Theorem 9.35. Suppose x− ∈ P◦
1 (H

−) and x+ ∈ P◦
1 (H

+). Suppose X = {χr}0≤r≤1 is a
regular path of asymptotically constant paths. Then:

1. If CZ(x−) = CZ(x+) − 1 then the space OX (x
−, x+) is a compact manifold of

dimension zero. Thus we can define its parity

nX (x
−, x+) := #2OX (x

−, x+). (9.10)
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2. If instead one has CZ(x−) = CZ(x+) then the boundary ∂OX (x−, x+) of the com-
pactification OX (x−, x+) of the one-dimensional manifold OX (x

−, x+) can be iden-
tified as:

∂OX (x−, x+) =
(
Nχ0(x

−, x+)× {0}
)
∪
(
Nχ1(x

−, x+)× {1}
)

∪

 ∪
y−∈P◦

1 (H
−),CZ(y−)=CZ(x−)−1

M(H−,J−)(x
−, y−)×OX (y

−, x+)


∪

 ∪
y+∈P◦

1 (H
+),CZ(y+)=CZ(x+)+1

OX (x
−, y+)×M(H+,J+)(y

+, x+)

 .

Exercise 9.36. Use Theorem 9.33 and the gluing theorem you formulated in Exercise
9.34 to prove Theorem 9.35.

We can now define the so-called prism operator from (9.6). Namely, we set

PX
⟨
x−
⟩
:=

∑
x+∈P◦

1 (H
+),CZ(x+)=k+1

nX (x
−, x+)

⟨
x+
⟩
, (9.11)

where the numbers nX (x−, x+) were defined in (9.10), and then extending by linearity.

Exercise 9.37. Use Theorem 9.35 to prove that the map PX defined in (9.11) satisfies
(9.7).

We have now nearly completed the proof of Theorem 9.3: it follows from (9.7) that
if χ is a regular asymptotically constant path connecting (H−, J−) to (H+, J+) then the
induced map ϕχ : HF∗(H

−) → HF∗(H
+) depends only on the asymptotes (H±, J±). It

remains to verify the functoriality property. This states that if (H0, J0) is another regular
pair, and χ0 and χ1 are regular asymptotically constant paths connecting (H−, J−) to
(H0, J0) and (H0, J0) to (H+, J+) respectively, then the induced maps satisfy

ϕχ = ϕχ0 ◦ ϕχ1 . (9.12)

This does not follow from what we have already proved, but it is only a short step away.
Indeed, given such a pair χ0 and χ1, write χ0(s) = (H0,s, J0,s) and similarly χ1(s) =
(H1,s, J1,s), and suppose that both χ0 and χ1 are independent of s for |s| ≥ T . Then for
τ > T we define

χτ (s) :=

{
(H0,s+τ , J0,s+τ ), s ≤ 0,

(H1,s−τ , J1,s−τ ), s ≥ 0.

Note that χτ (s) is independent of s for |s| ≥ T +τ . Thus χτ is an asymptotically constant
path from χ0 to χ1. One can show that, after possibly a small perturbation of χ0 and χ1,
there exists a sequence τk → +∞ such that this χτk is a regular asymptotically constant
path for each k ∈ N. See [AD10, Lemma 11.5.1]. Since we already know that the induced
map between the Floer homology groups only depends on the asymptotes, we know that
our original map ϕχ from the left-hand side of 9.12 agrees with ϕχτk :

ϕχ = ϕχτk , as maps HF∗(H
−) → HF∗(H

+).

Thus to complete the proof of (9.12), and hence of Theorem 9.3, it suffices to prove:
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Proposition 9.38. For all k sufficiently large, and for all x± ∈ P◦
1 (H

±) such that
CZ(x−) = CZ(x+), there is a bijection between the zero-dimensional spaces:∪

x0∈P◦
1 (H

0),CZ(x0)=CZ(x−)

Nχ0(x−, x0)×Nχ1(x0, x+) and Nχτk (x−, x+).

Exercise 9.39. Use Proposition 9.38 to show that for all k sufficiently large, the chain
maps Φχ1 ◦ Φχ0 and Φχτk (as defined in (9.5)) coincide.

Remark 9.40. Thus Proposition 9.38 and Exercise 9.39 show that for the "special" path
χτk , the maps Φχ1 ◦Φχ0 and Φχτk coincide even on the chain level. In general however we
can only expect 9.12 to hold on the level of homology.

The proof of Proposition 9.38 is a gluing argument, and thus sadly we will omit this.
The interested reader is referred to [AD10, Section 11.5] for a complete proof. We have
now completed the proof of Theorem 9.3, and hence also of Corollary 9.4. We therefore
know that the Floer homology groups HF∗(H) are canonically independent of the choice
of non-degenerate H. Thus all that remains to prove the main result, Theorem 2.25 is to
actually sit down and compute these groups.
Although we shall not persue this method, the original argument (which is due to Salamon
and Zehnder [SZ92]) used to compute the Floer homology groups HF∗(H) was to show that
if Ht(q) = h(q) is an autonomous Hamiltonian on Q which is a Morse function satisfying
the C2-smallness assumption:

∥dXh∥L2 < 2π (9.13)

then the Floer homology groups HF∗(h) agree with the Morse homology groups HM∗+n(h) ∼=
H∗+n(Q;Z2). To see why this might be reasonable, we observe that (9.13) implies that h
is non-degenerate: in fact in this case every element x of P◦

1 (h) is constant, x(t) ≡ q for
some q ∈ crit(h). Thus in particular h is non-degenerate (as h is assumed to be Morse).
To prove this we may assume that h is a function on R2n. If x(t) is a 1-periodic solution,
we can represent x by its Fourier expansion:

x(t) =
∑
k∈Z

ak(x)e
2πikt.

Thus
ẋ(t) =

∑
k∈Z

2πikak(x)e
2πikt.

Using Parseval’s inequality we obtain

∥ẍ∥2L2(S1) =
∑
k∈Z

4π2k2|ak(ẋ)|2 ≥ 4π2
∑
k ̸=0

|ak(ẋ|2 = 4π2∥ẋ∥2L2(S1),

since necessarily ak(ẋ) = 0. Thus we obtain

∥ẋ∥L2(S1) ≤
1

2π
∥ẍ∥L2(S1).

But the assumption (9.13) implies that if x ∈ P1(h) is non-constant, then since ẍ =
dXh(x)(ẋ), one has

∥ẍ∥L2(S1) < 2π∥ẋ∥L2(S1).

Comparing the last two equations we see that every x ∈ P1(h) is necessarily constant.
Suppose now that u : R × S1 → Q solves the Floer equation

∂su+ J(u)∂tu− J(u)Xh(u) = 0.
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If we could show that ∂tu ≡ 0, then since JXh = ∇h (using the metric gJ := ω(J ·, ·)), it
would follow that u is a positive gradient flow line of ∇h (and hence a negative gradient
flow line of ∇(−h)). This is not such an unreasonable hope, since we have just shown that
all critical points of the Floer equation are independent of t under the assumption (9.13),
and hence it is not too much to hope that the same is true for all flow lines too. This would
immediately imply that Floer complex agrees with the Morse complex for (−h, gJ) (since
we have positive gradient flow lines). Modulo identifying the grading shift, this would
show that the Floer homology agrees with the Morse homology, and hence the singular
homology.
Unfortunately showing that all the gradient flow lines are independent of t is very difficult,
and we refer the reader to [AD10, Chapter 10] for a complete exposition. In particular we
emphasise that whilse (9.13) is enough to ensure that all critical points are constant, in
order to prove all flow lines are independent of t one needs to strengthen (9.13). Namely,
one can prove that there exists 2π ≫ ε > 0 such that if ∥dX)h∥L2 < ε then all gradient
flow lines are independent of t.
Instead we will argue somewhat differently, by making use of the Morse-Bott theory de-
veloped at the end of Section 1. Let us begin by defining the notion of a weakly non-
degenerate7 Hamiltonian.

Definition 9.41. Fix H ∈ C∞(S1×Q), but do not assume that H is non-degenerate. Let
us write λ : P◦

1 (H) → Q for the map λ(x) := x(0). A connected component K ⊂ P◦
1 (H)

is called a Morse-Bott component if λ(K) is a closed submanifold of Q such that

Tqλ(K) = ker(DφH(q)− 1) for all q ∈ λ(K). (9.14)

Thus if K = {x} consists of a single loop then K is a Morse-Bott component if and only
if x is a non-degenerate element of P◦

1 (H) in the sense of Definition 2.13. A Hamiltonian
H ∈ C∞(S1 × Q) is called weakly non-degenerate if every component of P◦

1 (H) is a
Morse-Bott component.

Remark 9.42. Note that we are not insisting that every component K ⊂ P◦
1 (H) is a

manifold of the same dimension.
The Morse-Bott condition can be reformulated as follows. First, a subset K ⊂ P◦

1 (H)
is a compact submanifold of the loop space ΛQ if and only if the set λ(K) is a compact
submanifold of Q. Now recall from Lemma 3.15 that the Hessian Dv∇JAH(x) of the
Hamiltonian action functional AH at a critical point x ∈ P◦

1 (H) is given by

Dv∇JAH(x)[ξ] := J(x)(∇tξ −∇ξXHt(x)).

Next, recall from Lemma 3.16 that for every x ∈ K the kernel of the linear map DφH(x(0))
on Tx(0)Q is isomorphic to the kernel of the Hessian of AH at x: namely if Dv∇JAH(x)[ξ] =
0 then ξ(t) = Dφt

H(x(0)[ξ(0)]. Thus the Morse-Bott condition asserts that the kernel of
the Hessian agrees with the tangent space of the critical manifold K. This proves:

Lemma 9.43. A Hamiltonian H ∈ C∞(S1 ×Q) is weakly non-degenerate if and only if
the action functional AH is a Morse-Bott function on ΛQ in the sense of Definition 1.42.

We will now explain how to construct the Morse-Bott Floer complex. If H is weakly
non-degenerate then the space crit(AH) is a closed finite-dimensional submanifold of ΛQ.
Let us fix a Morse function

h : crit(AH) → R.

7Warning: This is not standard terminology. I just made it up!
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As in Section 1, what we really mean by this is that for each component K ⊂ P◦
1 (H),

we select a Morse function hK : K → R, and then we denote by h : crit(AH) → R the
function defined by h|K := hK . We then choose a Riemannian metric ρ on crit(AH), such
that the negative gradient flow ϕs of h with respect to ρ is Morse-Smale. We denote by
W u(x;−∇ρh) the unstable manifold of x with respect to the flow ϕs:

W u(x;−∇ρh) :=

{
y ∈ crit(AH) | lim

s→−∞
ϕs(y) = x

}
.

Similarly the stable manifold W s(x;−∇ρh) is the set

W s(x;−∇ρh) :=

{
y ∈ crit(AH) | lim

s→+∞
ϕs(y) = x

}
.

Definition 9.44. Fix critical points x± ∈ P◦
1 (H). An element of Mc

k(x
−, x+) is a tuple

(2k − 1)-tuple
(u = (u1, . . . , uk), t = (t1, . . . , tk−1)) ,

where uj ∈ C∞(R × S1, Q) and tj ≥ 0 are such that:

1. Each uj is a non-constant gradient flow line of AH :

∂suj + J(u)(∂tu−XHt(uj)) = 0.

2. The first flow line u1 satisfies

lim
s→−∞

u1(s) ∈W u(x;−∇ρh),

and the last flow line uk satisfies

lim
s→+∞

uk(s) ∈W s(x+;−∇ρh).

3. For 1 ≤ j ≤ k − 1 there are critical submanifolds Kij and gradient flow lines vj ∈
C∞(R,Kij ) of h:

∂svj +∇ρh(vj) = 0,

such that
lim

s→+∞
uj(s) = vj(0),

lim
s→−∞

uj+1(s) = vj(tj).

The ’c’ in Mc stands for ’cascades’. There is a free R-action on each flow line uj ,
and hence Mk(x

−, x+) admits a free Rk-action. As before we denote by Mc
k(x

−, x+) the
quotient space

Mc
k(x

−, x+) := Mc
k(x

−, x+)/Rk.

If l = m then we let M0(x
−, x+) denote the set of normal gradient flow lines of h running

from x− to x+, and as usual Mc
0(x

−, x+) is then the quotient space Mc
0(x

−, x+)/R. If x−
and x+ do not belong to the same component then we set M0(x

−, x+) := ∅. Finally we
set

Mc(x−, x+) :=
∞∪
k=0

Mc
k(x

−, x+),
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and

Mc(x−, x+) :=

∞∪
k=0

Mc
k(x

−, x+)

In other words, the space Mc(x−, x+) is the space of gradient flow lines with arbitrarily
many cascades. Recall we defined the Conley-Zehnder index CZ(x) for non-degenerate
elements of P◦

1 (H). In fact, it is possible to extend the definition of CZ to deal with
Morse-Bott components. However in this case CZ(x) is only a half-integer in general. The
precise definition of this extension would take too long to explain properly in these notes
however. Thus for now the reader is invited to simply pretend that we have also defined
CZ(x) in this more general case. See [RS93, RS95] for the proper definition.

Definition 9.45. Given a component K ⊂ P◦
1 (H), we define

µ(K) := CZ(x)− 1

2
dim K,

where x ∈ K (one can show that CZ is constant on K, and moreover that µ(K) is always
an integer). Given x ∈ crit(h) ⊂ P◦

1 (H) we define

µh(x) := µ(K) + indh(x),

where as usual indh(x) denotes the index of x as a critical point of h.

The following result is an extension of the index theory we discussed earlier:

Theorem 9.46. Fix two components K− and K+ of P◦
1 (H) and let M(K−,K+) denote

the space of all gradient flow lines u of AH running from some point x− ∈ K− to some
point x+ ∈ K+:

M(K−,K+) :=
∪

x±∈K±

M(x−, x+)

(note we are not dividing out by the R -action). Then M(K−,K+) has virtual dimension

virdimM(K−,K+) = µ(K−)− µ(K+) + dim K−.

We won’t prove Theorem 9.46. The proof is not particular difficult, but it is not
possible to give without first giving the definition of CZ in this more general setting.
Having proved Theorem 9.46 one can then deduce the following result.

Theorem 9.47. The space Mc(x−, x+) has virtual dimension

virdimMc(x−, x+) = µh(x
−)− µh(x

+)− 1.

Skipping lightly over numerous difficulties, as in Section 1 one can then proceed with
the construction of the Morse-Bott Floer groups. First we define the chain complex

CFB∗(H,h) :=
⊕

x∈crit(h)

Z2⟨x⟩,

where the grading is given by µh, and then one defines the boundary operator

∂J,ρ : CFBk(H,h) → CFB∗(H,h)

by setting
∂ ⟨x⟩ :=

∑
y∈crit(h), µh(y)=µh(x)−1

nc(x, y) ⟨y⟩ ,
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and then extending by linearity. Here nc(x, y) denotes the parity of the moduli space
Mc(x, y). This is well defined, since one can prove that these moduli spaces are compact
in dimension zero. By studying the compactness properties of the one-dimensional moduli
spaces one proves that ∂ ◦ ∂ = 0, and thus we again obtain a homology theory. Moreover
the theory of continuation maps developed above also goes through, and so as before we
see that this homology is independent of all the auxilliary data (H,h, J, ρ). Moreover
since a non-degenerate Hamiltonian is also a weakly non-degenerate Hamiltonian, this
new Floer homology also contains the one considered previously as a special case. We
summarize this in the following theorem.

Theorem 9.48. The Floer homology groups HF∗(H) are also well defined if H is assumed
only to be weakly non-degenerate, and moreover they are independent of the weakly non-
degenerate Hamiltonian H.

The reader may question why there was any point in introducing the Morse-Bott
theory. The following exercise explains this:

Exercise 9.49. Show that the zero Hamiltonian H ≡ 0 is weakly non-degenerate.

In this case one has P◦
1 (H) ∼= Q consisting exactly of the constant loops. Thus choosing

a Morse function h : P◦
1 (H) → R is the same thing as choosing a Morse function h on

Q. For q a constant loop one has CZ(q) = 0, and hence the grading µh(q) is given by
indh(q) − n. Next, since all critical points are constant, and AH(q) = 0 for any constant
q, we see that there are no non-constant gradient flows lines of AH (recall that AH strictly
decreases along non-constant gradient flow lines). Thus the Morse-Bott Floer complex
reduces to the Morse complex of h, and we obtain:

Theorem 9.50. One has

HF∗(H ≡ 0, h) ∼= HM∗+n(h) ∼= H∗+n(Q;Z2).

Combining the last two theorems we see that we have finally completed the proof of
Theorem 2.25. Thus we have also proved the non-degenerate Arnold Conjecture 2.16 for
symplectically aspherical symplectic manifolds.
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CHAPTER 10

Floer homology of cotangent bundles
10.1 Hamiltonian dynamical systems on cotangent bundles

Let B be a connected closed orientable smooth manifold of dimension n. Points in the
cotangent bundle T ∗B will be denoted by (q, p), with q ∈ B, p ∈ T ∗

qB, and π : T ∗B → B
will denote the foot point map. Similarly points in the tangent bundle TB are denoted by
(q, v), and by a slight abuse of notation we denote also by π the foot point map TB → B.
The cotangent bundle T ∗B carries the following canonical structures: the Liouville 1-form
λ and the Liouville vector field Z, which are defined by

λ(ξ) = p(Dπ(x)[ξ]) = dλ(Z, ξ) ∀ξ ∈ TxT
∗B, x = (q, p) ∈ T ∗B,

and the symplectic structure ω = dλ. In local coordinates (q1, . . . , qn, p1, . . . pn) of T ∗B
we have

λlocal =
n∑

j=1

pj dqj , Zlocal =
n∑

j=1

pj
∂

∂pj
, ωlocal =

n∑
j=1

dpj ∧ dqj .

The vertical space

T v
xT

∗B = kerDπ∗(x) ∼= T ∗
qB, x = (q, p) ∈ T ∗B,

is a Lagrangian subspace of (TxT ∗B,ωx).
A 1-periodic Hamiltonian H, i.e. a smooth function H : S1 × T ∗B → R, determines

as usual a 1-periodic vector field XH , and in local coordinates the Hamiltonian equations
are familiar from classical mechanics:

ẋ(t) = XH(t, x(t)), (10.1)

writing x(t) = (q(t), p(t)) becomes:{
q̇ = ∂pH(t, q, p),
ṗ = −∂qH(t, q, p).

(10.2)

10.2 The geometry of the (co)tangent bundle

Let us now fix an auxilliary Riemannian metric g on B. Let ∇ denote the Levi-Civita
connection of g.

Definition 10.1. We define the connection map κg of g as follows. Fix ξ ∈ TwTB and
choose a curve w : (−ε, ε) → TB , w(t) = (q(t), v(t)) adapted to ξ. This means that
w(0) = w and ẇ(0) = ξ. Then define

κg(ξ) := (∇q̇v)(0) = (∇tv)(0).

The connection map κg defines a horizontal-vertical splitting of T (TB): given w =
(q, v) ∈ T (TB) we write

TwTB = T h
wTB ⊕ T v

wTB
∼= TqB ⊕ TqB, (10.3)

where T h
wTB = ker(κg : T(q,v)TB → TqB), where κg is the connection map of the Levi-

Civita connection ∇ of g.
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Given ξ ∈ T (TB) we denote by ξh and ξv the horizontal and vertical components, and
given ξ ∈ T(q,v)TB and u, v ∈ TqB, we will often write

ξ ≈ (u, v) (10.4)

to indicate that under the splitting (10.3) one has ξh = u and ξv = v.
Note that it if w(t) = (q(t), v(t)) is a curve in TB then by definition one has

ẇh = q̇, ẇv = ∇tv, (10.5)

and hence ẇ ≈ (q̇,∇tv. The Sasaki metric gTB on TB is defined by

gTB(ξ, ζ) :=
⟨
ξh, ζh

⟩
+ ⟨ξv, ζv⟩ .

Warning: We warn the reader now that we will consistently use the "musical” isomorphism
v 7→ ⟨v, ·⟩ to identify TB with T ∗B. Thus we will frequently refer to the above splitting
also as a splitting of T (T ∗B) = T hT ∗B ⊕ T vT ∗B. In particular, we will talk about the
Sasaki metric gT ∗B on T ∗B. Moreover, unless specified otherwise, the norm | · | should
always be thought as being with respect to g if the (co)vector belongs to TB or T ∗B, and
with respect to gTB or gT ∗B if the vector belongs to T (TB) or T (T ∗B).

The horizontal-vertical splitting also determines an almost complex structure Jg called
the metric almost complex structure via

Jg =

(
−1

1

)
.

The metric almost complex structure Jg is ω-compatible. Indeed, ω(Jg·, ·) is precisely the
Sasaki metric gT ∗B.

10.3 The functional setting

As we will see, for cotangent bundles there is no need to restrict to just the contractible
loops. Thus let us be slightly naughty and redefine the space ΛT ∗B as the space C∞(S1, T ∗B)
of all smooth loops, rather than just the contractible ones. Similarly we will denote by
ΛB the space of all smooth maps from S1 into B. Unfortunately as we have already
noted the spaces ΛB and ΛT ∗B do not admit the structure of a Hilbert manifold (they
are only Fréchet manifolds, which is not sufficient for Morse theory), and hence we will
often work with their Sobolev completions. Although we have already dealt with these
spaces, the treatment now needs to be more thorough, and so we define them properly.
For our purposes it is most convenient to define these spaces in the following manner.

By Nash’s embedding theorem, we may view (B, g) as being embedded isometrically
in some (RN , ge), where ge denotes the Euclidean metric on RN .

Let W 1,2([0, 1],RN ) denote the Hilbert manifold

W 1,2([0, 1],RN ) :=

{
q : [0, 1] → RN absolutely continuous |

ˆ 1

0
|q̇(t)|2 dt <∞

}
,

equipped with the Hilbert product from Definition 3.3.

⟨⟨ξ, ζ⟩⟩1,2 :=
ˆ 1

0
⟨ξ, ζ⟩ dt+

ˆ 1

0

⟨
ξ̇, ζ̇
⟩
dt. (10.6)
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Now consider the submanifold

W 1,2([0, 1], B) :=
{
q ∈W 1,2([0, 1],RN ) | q(t) ∈ B for almost every t ∈ [0, 1]

}
.

These spaces are defined independently of the embedding and of the metric g on B.
Moreover if ξ, ζ ∈ C∞(q∗W ) for q ∈ W 1,2([0, 1], B) then the Hilbert product ⟨⟨η, η′⟩⟩1,2
coincides with the Hilbert product from Definition 3.3, where we use the Levi-Civita
connection of g.

Let
LRN := {q ∈W 1,2([0, 1],RN ) | q is closed}.

and let LB denote the submanifold of W 1,2([0, 1], B) defined by

LB :=W 1,2([0, 1], B) ∩ LRN .

We can identify TqLB with W 1,2(q∗TB), and the space LB is homotopy equivalent to
ΛB . The embedding (M, g) ↪→ (RN , ge) induces an embedding (T ∗B, gT ∗B) ↪→ (R2N , ge).
We define W 1,2([0, 1], T ∗B) using this embedding, and from that the spaces LT ∗B. The
nice thing about these choices of embeddings is that they mean that all norms we work
with (i.e. coming from the metric g or the Sasaki metric gT ∗B) coincide with the Euclidean
norms. Thus in all of what follows, one can happily interpret all norm signs | · | as being
the Euclidean norm. In particular, since we are now in a Euclidean setting we can work
with Sobolev spaces that are in general not defined, such as W 1,2(R × [0, 1], T ∗B). Note
however that this latter space is not invariantly defined (and thus depends on our specific
choice of embedding).

Exercise 10.2. Prove that under this embedding if J0 denotes the canonical almost
complex structure on R2N from (3.3) then J0|T ∗B = Jg.

10.4 Lagrangians and Hamiltonians

Suppose L ∈ C∞(S1×TB,R) is a smooth function. For historical reasons, just as smooth
functions on cotangent bundles are called "Hamiltonians", smooth functions on the tangent
bundle are known as "Lagrangians" (not to be confused with Lagrangian submanifolds!).

As usual we will often write Lt : TB → R for the function L(t, ·, ·). We denote by
∇Lt = ∇gTBLt the gradient of Lt with respect to the Sasaki metric gTB. Thus given a
point w = (q, v) ∈ TB, the vector ∇Lt(w) belongs to TwTB. As a result we can take its
horizontal and vertical components, which we denote by

∇hLt(q, v) := (∇Lt(q, v))
h ∈ TqB, ∇vLt(q, v) := (∇Lt(q, v))

v ∈ TqB. (10.7)

But now we can play this game again. For instance, think of ∇hLt as a map TB → TB.
Then we can consider its differential

D(∇hLt) : T (TB) → T (TB).

The fun doesn’t stop here: we use D(∇hLt) to define for each (q, v) ∈ TB a map

∇hhLt(q, v) : TqB → TqB,

by setting
∇hhLt(q, v)[u] :=

(
[D(∇hLt)(q, v)[ξ]

)v
,
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where ξ is the unique vector such that ξ ≈ (u, 0) (using the notation from (10.4)). Similarly
we define a map ∇hvL(q, v) : TqB → TqB by setting

∇hvLt(q, v)[u] :=
(
[D(∇hLt)(q, v)[ζ]

)v
,

where now ζ is the unique vector such that ζ ≈ (0, u). Finally we define maps ∇vhLt and
∇vvLt in exactly the same way, starting with ∇vLt instead.

Exercise 10.3. Despite the fact I have cleverly managed to make this look very com-
plicated, in fact it is really easy. Convince yourself of this by showing that ∇vvLt(q, v)
coincides with the second derivative of the map v 7→ Lt(q, v) in the vector space TqB. Then
answer the following question: does one still have “equality of mixed partial derivatives”
in this setting? That is, does it hold that ∇hvLt = ∇vhLt?

In exactly the same way given a Hamiltonian H ∈ C∞(S1 × T ∗B,R) we can speak of
the operators ∇hHt, ∇vHt, ∇hhHt, ∇hvHt, ∇vhHt and ∇vvHt.

Definition 10.4. A Lagrangian L ∈ C∞(S1 × TB,R) is called a Tonelli Lagrangian if
the following three conditions are satisfied:

(T1) Lt is fibrewise strictly convex: that is, the operator ∇vvLt is positive definite. Thus
for any (q, v) ∈ TB, one has

∇vvLt(q, v)(u) > 0 for all 0 ̸= u ∈ TqB.

(T2) Lt is fibrewise superlinear: that is, for any constant C > 0 there exists a finite
constant A(C) > 0 such that

L(t, q, v) ≥ C|v| −A(C), for all (t, q, v) ∈ S1 × TB.

Here | · | denotes some Riemannian metric on B, but due to compactness of B the
condition (T2) does not depend on the choice of metric (up to changing the finite
constant A(C)).

(T3) The Hamiltonian flow φt
H : T ∗B → T ∗B of the Fenchel dual Hamiltonian H (defined

in Definition 10.5 immediately below) exists for all (t, q, p) ∈ R × T ∗B .

Note that the assumption (T1) and (T2) imply that the Legendre transformation

S1 × TB → S1 × T ∗B, (t, q, v) 7→ (t, q,∇vL(q, v)), . (10.8)

is a diffeomorphism. Thus we can make the following definition:

Definition 10.5. The Fenchel dual Hamiltonian H ∈ C∞(S1 × T ∗B,R) is defined by

Ht(q, p) := p(v)− Lt(q, v), where ∇vL
(
tq, v) = p. (10.9)

The assumption ( T3) above is that the flow exists for all (t, q, p) ∈ R × T ∗B. Note
that since T ∗B is non-compact, this is not automatically true. However if say, L (and
hence H) are autonomous then this is automatically satisfied. More generally, we have:

Lemma 10.6. Suppose the Fenchel dual Hamiltonian H satisfies

∂H

∂t
(t, q, p) ≤ c(1 +H(t, q, p)), for all (t, q, p) ∈ S1 × T ∗B. (10.10)

Then the flow φt
H exists for all (t, q, p) ∈ R × T ∗B.
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Proof. Since dHt[XHt ] = 0, (10.10) implies that

d

dt
H(t, φt

H(q, p)) ≤ c(1 +H(t, φt
H(q, p))).

Thus by Gronwall’s lemma, H is bounded along the flow. Then coercivity of H implies
that the flow exists for all time.

Exercise 10.7. Show that one has

Ht(q, p) = max
v∈TqB

{p(v)− Lt(q, v)} .

Similarly a Hamiltonian H ∈ C∞(S1 × T ∗B,R) is called Tonelli if the following two
conditions are satisfied:

(T1’) Ht is fibrewise strictly convex: that is, the operator ∇vvHt is positive definite. Thus
for any (q, p) ∈ T ∗B, one has

∇vvHt(q, p)(z) > 0 for all 0 ̸= z ∈ T ∗
qB.

(T2’) Ht is fibrewise superlinear: that is, for any constant C > 0 there exists a finite
constant A(C) > 0 such that

L(t, q, p) ≥ C|p| −A(C), for all (t, q, p) ∈ S1 × T ∗B.

(T3) The Hamiltonian flow φt
H : T ∗B → T ∗B exists for all (t, q, p) ∈ R × T ∗B .

As before, the assumption (T1’) and (T2’) imply that Legendre transformation

S1 × T ∗B → S1 × TB, (t, q, p) 7→ (t, q,∇vHt(q, p)), . (10.11)

is a diffeomorphism, and so we can define the Fenchel dual Lagrangian L by

Lt(q, v) := p(v)−Ht(q, p), where ∇vHt(q, p) = v.

Exercise 10.8. Show that the Fenchel dual Lagrangian is itself a Tonelli Lagrangian. In
fact, show that the two operations L 7→ H and H 7→ L invert each other - that is, if L
is a Tonelli Lagrangian then the Fenchel dual of the Fenchel dual of L is L again, and
similarly with H.

The class of Tonelli Hamiltonians and Lagrangians is the "natural" one to study when
working with cotangent bundles. Nevertheless from the point of view of Floer theory it is
too difficult to work with all Tonelli Hamiltonians. Roughly speaking, this is due to the
fact that Tonelli Hamiltonians in general may be too "wild" at infinity. In this course we
will work with a slightly different class of Hamiltonians, which I will call Hamiltonians of
"quadratic" type. They were introduced by Abbondandolo and Schwarz in their seminal
paper [AS06]. Roughly speaking, a Hamiltonian will be of quadratic type if H behances
like a quadratic form in the p-variables for |p| large. On the one hand, this is a stronger
restriction than the Tonelli assumption at infinity. On the other hand, the conditions
(Q1) and (Q2) defined involve only the behaviour of H for |p| large, and they impose no
assumptions on compact subsets of T ∗B.

Recall that Z denotes the Liouville vector field on T ∗B
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Definition 10.9. A Hamiltonian H ∈ C∞(S1 × T ∗B,R) is said to be of quadratic type
if the following two conditions are satisfied.

(Q1) There exist c1 > 0 and c2 ≥ 0 such that

dHt(q, p)[Z]−Ht(q, p) ≥ c1|p|2 − c2,

for every (t, q, p) ∈ S1 × T ∗B.

(Q2) There exists c3 ≥ 0 such that

|∇hHt(q, p)| ≤ c3(1 + |p|2), |∇vHt(q, p)| ≤ c3(1 + |p|),

for every (t, q, p) ∈ S1 × T ∗B.

Exercise 10.10. Show that condition (Q1) and (Q2) imply the existence of constants
c4, c5 > 0 such that

c4(1 + |p|)2 ≥ Ht(q, p) ≥
1

2
c1|p|2 − cc, (10.12)

and hence conditions (Q1) and (Q2) really do force H to grow exactly quadratically at
infinity.

Exercise 10.11. Show also that condition (Q1) does not depend on the choice of the
metric on B (up to choosing new constants c1, c2).

A slightly more challenging exercise is to show that the condition (Q2) also does not
depend on the metric:

Exercise 10.12. Show that condition (Q2) is equivalent to the following condition:

(Q2’) For any set (q1, . . . , qn) of local coordinates on B, if (q1, . . . , qn, p1, . . . , pn) denote
the corresponding local coordinates on T ∗B, then there exists a constant C > 0
(depending on the choice of coordinates) such that∣∣∣∣∂Ht

∂qj
(q, p)

∣∣∣∣ ≤ C(1 + |p|2),
∣∣∣∣∂Ht

∂pj
(q, p)

∣∣∣∣ ≤ C(1 + |p|), for all j = 1, . . . , n.

(10.13)

Hint: This isn’t difficult, but it requires you to go back and carefully examine how ∇hH
was defined. If you get stuck, see [AS06, p273-274]. Finally, use (10.13) to show that
condition (Q2) is also independent of the choice of metric on B.

Let us also note that condition (Q2) implies that there exists a constant c0 > 0 such
that

|XHt(q, p)| = |∇Ht(q, p)| ≤ c0(1 + |p|2), for all (t, q, p) ∈ S1 × T ∗B. (10.14)

where here ∇Ht denotes the gradient of H with respect to the Sasaki metric gT ∗B.
Remark 10.13. In fact, in all of the arguments that follow, we shall only ever use (10.14),
rather than the full strength of condition (Q2). The condition (10.14) is strictly weaker
than (Q2), however it is a somewhat less aesthetically pleasing condition since (10.14)
does depend on the choice of metric on B. Thus we prefer to stick with the condition
(Q2).
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Lemma 10.14. Assume that H ∈ C∞(S1 × T ∗B) is non-degenerate (i.e. all elements
x ∈ P1(H) are non-degenerate), and assume that H satisfies both (Q1) and (Q2). Then
for every a ∈ R, the set of solutions x ∈ P1(H) such that AH(x) ≤ a is finite.

Proof. Let x = (q, p) ∈ P1(H) be such that AH(x) ≤ a. Then by (Q1),

a ≥ AH(x) =

ˆ
S1

(λ(ẋ)−Ht(x)) dt =

ˆ
S1

(ω(Z,XHt(x))−Ht(x)) dt

=

ˆ
S1

(dHt(q, p)[Z(q, p)]−Ht(q, p)) dt ≥ c1∥p∥2L2 − c2,

so P1(H) ∩ {AH ≤ a} is bounded in L2. By (10.14) we also have

|ẋ| = |XH(t, x)| ≤ c0(1 + |p|2),

and thus we see that P1(H) ∩ {AH ≤ a} is also bounded in W 1,1. By the Sobolev
embedding theorem, one also has P1(H) ∩ {AH ≤ a} bounded in L∞. In particular, the
set {x(0) | x ∈ P1(H), AH(x) ≤ a} is pre-compact in T ∗B. Since H is non-degenerate,
this set is also discrete (cf. Exercise 3.28), and thus must be finite.

10.5 Grading

As we have already mentioned, when working with cotangent bundles it is convenient to
work with all one-periodic orbits, rather than just the contractible ones. In Definition
6.22 we explained how to unambiguously associate a Conley-Zehnder index CZ(x) to any
contractible orbit, under the assumption that the map Ic1 : π2(Q) → Z from Definition
2.22 vanishes. For cotangent bundles, the first Chern class actually zero: c1(TB) = 0
(and thus in particular Ic1 also vanishes). We will prove this shortly. Thus we can still
use the recipe from Definition 6.22 to define the Conley-Zehnder index for contractible
solutions. This will not work for the non-contractible ones though, and hence we need
another method. There are various different approaches that one can use; we shall favour
the Abbondandolo-Schwarz method of working with vertical-preserving trivialisations.

Definition 10.15. Suppose (Q2n, ω) is a symplectic manifold. A polarisation of Q is
a involutive Lagrangian distribution L ⊂ TQEquivalently, a polarisation of Q is a La-
grangian foliation, that is an n-dimensional foliation all of whose leaves are Lagrangian
submanifolds of Q.

Lemma 10.16. Suppose (Q2n, ω) admits a polarisation. Then all the odd Chern classes
c2k+1(TQ) are zero.

Proof. The polarisation allows one to reduce the structure group of TQ from U(n) to
O(n).

Cotangent bundles always admits polarizations: namely the vertical distribution T vTB.
Thus in particular, we see that c1(TT ∗B) = 0.

Exercise 10.17. When (if ever) does the horizontal distribution T hTB define a polari-
sation?

We will be interested in trivialisations that preserve the vertical distribution.

Definition 10.18. Suppose x : S1 → T ∗B is a smooth loop. A symplectic trivialisation
Φ : S1 × R2n → x∗T (T ∗B) is called vertical-preserving if

Φ(t)({0} × Rn) = T v
x(t)T

∗B txforallt ∈ S1. (10.15)
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The following lemma, which is taken from [AS06, Lemma 1.2] shows that such trivial-
isations always exist. Here it is important that our base manifold B is orientable.

Lemma 10.19. Assume that B is orientable, and let x ∈ P1(H). Then the symplectic
vector bundle x∗T (T ∗B) admits a vertical-preserving symplectic trivialisation.

Proof. Write x(t) = (q(t), p(t)). Since B is orientable, the vector bundle x∗(T vT ∗B) is
orientable, and hence trivial. Let

Ψ : S1 × Rn → x∗(T vT ∗M)

be a trivialisation, and let J be a ω-compatible complex structure on x∗(TT ∗M). Then

Tx(t)T
∗B = J(t)T v

x(t)T
∗B ⊕ T v

x(t)T
∗B,

and the trivialisation

Φ : S1 × Rn ⊕ Rn → x∗T (T ∗B), Φ(t) = (−J(t)Ψ(t)J0)⊕Ψ(t),

is symplectic and maps {0} × Rn into the vertical subbundle.

Denote by Spv(2n, ω0) the subgroup of the symplectic group consisting of those auto-
morphisms which preserve the vertical Lagrangian subspace {0} × Rn:

Spv(2n, ω0) := {W ∈ Sp(2n, ω0) |W ({0} × Rn) = {0} × Rn}.

The subgroup Spv(2n, ω0) retracts onto its closed subgroup

Spv(2n, ω0) ∩ U(n) =

{(
A 0
0 A∗

)
| R ∈ O(n)

}
.

The determinant map det : U(n) → S1 takes the values {±1}. It follows that Spv(2n, ω0)
and Spv(2n, ω0) ∩U(n) have two connected components, and that the inclusions

Spv(2n, ω0) ↪→ Sp(2n, ω0), Spv(2n, ω0) ∩U(n) ↪→ U(n),

induce the zero homomorphism between fundamental groups.

Lemma 10.20. If x ∈ P1(H) and Φ1 and Φ2 are two vertical-preserving trivialisations,
and we define symplectic paths Ψj : [0, 1] → Sp(2n, ω0)

Ψj(t) := Φ−1
j,t ◦Dφt

H(x(0)) ◦ Φj,0, j = 1, 2,

then the two Conley-Zehnder indices agree:

CZ(Ψ1) = CZ(Ψ2).

Proof. We can write
Ψ1(t) =W (t)Ψ2(t)W (0)−1,

for some
W : S1 → Spv(2n, ω0).

Since the inclusion Spv(2n, ω0) ↪→ Spv(2n, ω0) induces the zero homomorphism between
fundamental groups, W (0)Ψ2(t)W (0)−1 and Ψ1 are homotopic by a homotopy which fixes
the end-points. The homotopy and the naturality property of the Conley-Zehnder index
(see Theorem 6.7) index imply that CZ(Ψ1) = CZ(Ψ2).
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Thus for cotangent bundles we can given the following definition.

Definition 10.21. The Conley-Zehnder index of a periodic solution x ∈ P1(H) is the
integer CZ(x) := CZ(Ψ), where Ψ is a the symplectic path (as in (6.11)) associated to
some (and hence any) vertical-preserving trivialisation Φ of of x∗T (T ∗B).

Exercise 10.22. Suppose that x ∈ P◦
1 (H) is a contractible periodic orbit. Then we now

have two different ways to define a Conley-Zehnder index: either by choosing a trivial-
isation that comes from a admissible trivialisation in the sense of Definition 3.18, or by
choosing a vertical-preserving trivialisation, as in Definition 10.21. Show that these always
give the same answer, that is, the Conley-Zehnder index associated to an admissible trivi-
alisation always agrees with the Conley-Zehnder index associated to a vertical-preserving
trivialisation.

We also need to trivialise pullback bundles coming from flow lines. For this it is
important to know that if u is a flow line running from x− to x+, and Φ± are two
vertical-preserving trivialisations of (x±)∗T (T ∗B) then we can find a vertical-preserving
trivialisation Φ of u∗T (T ∗B) that restricts to Φ± over the ends. The next lemma, which
is taken from [AS06, Lemma 1.7] makes this precise. Recall that given a flow line u ∈
M(x−, x+) we denote by u the compactified map R × S1 → T ∗B (cf. Exercise 5.3).

Lemma 10.23. Let u ∈ M(x−, x+), and let

Φ± : S1 × R2n → x±
∗
T (T ∗B)

be two vertical-preserving symplectic trivialisations. Then there exists a vertical-preserving
symplectic trivialisation

Φ : R × S1 × R2n → u∗T (T ∗B)

such that Φ(±∞, t) = Φ±(t) for every t ∈ S1.

Proof. By the same construction used in the proof of Lemma 10.20, we can find a certainly
find some vertical-preserving trivialisation

Φ0 : R × S1 × R2n → u∗T (T ∗B).

However this Φ0 will no have the correct asymptotics. Consider the loops in Spv(2n, ω0)∩
U(n)

W±(t) := Φ0(±∞, t)−1Φ±(t).

Since the inclusion Spv(2n, ω0) ∩ U(n) ↪→ U(n) induces the zero homomorphism between
fundamental groups, and since U(n) is connected, we can find a homotopy

W : R × S1 → U(n)

such that W (±∞, t) =W±(t) for every t ∈ S1. Then the unitary trivialisation

Φ(s, t) := Φ0(s, t)W (s, t), (s, t) ∈ R × S1,

has the required asymptotics.
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10.6 The L∞-estimates

Since T ∗B is non-compact, there is an extra difficulty in proving the compactness argu-
ments needed to define the boundary operator. In this case the space of all finite energy
gradient flow lines of AH is not compact, that is, the analogue of Theorem 8.8 is false.
Nevertheless if we restrict to a finite action window we do have bounds. This is the content
of the following result, which in the form we present, is due to Abbondandolo and Schwarz
[AS06, Theorem 1.14].

Theorem 10.24 (The L∞-estimates). Assume H satisfies (Q1) and (Q2). Fix α, β ∈ R,
and let Mα,β denote the space of all gradient flow lines of AH that satisfy

α ≤ AH(u(s, ·)) ≤ β, for all s ∈ R,

Then Mα,β is bounded in L∞(R × S1, T ∗B).

The proof of Theorem 10.24 has two distinct parts. The first part uses crucially the
fact that H satisfies (Q1) and (Q2), and obtains W 1,2-bounds on compact intervals. The
second stage makes use of the fact that we have embedded T ∗B into R2N in such a way
that the almost complex structure Jg is the restriction of the canonical one J0.

Theorem 10.25. There exists a constant c = c(α, β,H) such that if u = (q, p) ∈ Mα,β

and I ⊂ R is a compact interval then one has

∥p∥L2(I×S1) ≤ c
√
|I|, (10.16)

∥∇p∥L2(I×S1) ≤ c(
√
|I|+ 1). (10.17)

Proof. We will prove (10.16), and indicate how the argument extends to establish (10.17),
referring the reader to [AS06, Lemma 1.12] for the rest of the details. We will prove the
claim in seven stages.
Step 1 Let us first show note that for every u ∈ Mα,β one has

∥∂su∥L2(R×S1) ≤ a1 (10.18)

To show this take s0 < s1 and compute

∥∂su∥L2((s0,s1)×S1) =

ˆ s1

s0

ˆ
S1

|∂su|2dtds ≤ AH(u(s0, ·))− AH(u(s1, ·)).

Thus (10.18) follows with a1 := β − α.
Step 2 Now let us show that there exists a constant a2 > 0 such that

∥p(s, ·)∥L2(S1) ≤ a2(1 + ∥∂su(s, ·))∥L2(S1). (10.19)

To see this we first observe that

λ(∂tu) = λ(Jg∂su+XHt(u))

= ω(Z(u), Jg∂su+XHt(u))

= dHt(u)[Z(u)]− gT ∗B(Z(u), ∂su),

and hence using the fact that |Z(q, p)| = |p| and condition (Q1), we see that

λ(∂tu)−Ht(u) ≥ c1|p|2 − c2 − |p||∂su|. (10.20)
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Integrating this equation over S1 we obtain

β ≥ AH(u(s, ·)) =
ˆ
S1

λ(∂tu(s, t))−Ht(u(s, t))dt

≥ c1∥p(s, ·)∥2L2(S1) − c2 − ∥p(s, ·)∥L2(S1)∥∂su∥L2(S1),

which implies (10.19).
Step 3 Next we show there exists a3 such that

∥p(s, ·)∥L∞(S1) ≤ a3(1 + ∥∂su(s, ·)∥2L2(S1), for every s ∈ R. (10.21)

Indeed, by (10.14),

∥∂tp(s, ·)∥L1(S1) ≤ ∥∂tu(s, ·)∥L1(S1)

≤ ∥XH(·, u(s, ·))∥L1(S1) + ∥Jg∂su(s, ·)∥L1(S1)

≤ c0(1 + ∥p(s, ·)∥2L2(S1)) + ∥∂su(s, ·)∥L1(S1),

where we have used the fact that the almost complex structure Jg has norm 1 (with respect
to the Sasaki metric gT ∗B). Then by (10.19), have

∥∂tp(s, ·)∥L1(S1) ≤ c0(1 + a22(1 + ∥∂su(s, ·)∥L2(S1))
2) + ∥∂su(s, ·)∥L2(S1).

Thus the W 1,1 norm of p(s, ·) on S1 is bounded by a quadratic function of ∥∂su(s, ·)∥L2(S1).
The Sobolev embedding theorem implies the same for the L∞ norm, which completes the
proof of (10.21).
Step 4 We show that for every ε > 0 there exists a number R(ε) > 0 such that if u ∈ Mα,β

and
S(u; ε) :=

{
s ∈ R | ∥p(s, ·)∥L∞(S1)

}
then if I is any interval of R with |I| ≥ ε then S(u; ε) ∩ I ̸= ∅. To see this fix s0 ∈ R and
observe that

min
s∈[s0,s0+ε]

∥∂su(s, ·)∥2L2(S1) ≤
1

ε

ˆ s0+ε

s0

∥∂su(s, ·)∥2L2(S1)ds

=
1

ε
∥∂su∥2L2([s0,s0+ε]×S1)

≤ a21
ε
.

Thus Step 3 implies the result with

R(ε) := a3

(
1 +

a21
ε

)
.

Step 4.5 We insert a random meaningless line of text to see whether anyone notices.
Step 5 We show there exists a constant a4 > 0 such that ∥p(s, ·)∥L∞(S1) ≤ a4 for all
s ∈ R. Indeed, fix s ∈ R and take s0 ∈ S(u; 1) such that |s − s0| ≤ 1. Let us assume for
simplicity that s0 ≤ s. Then we have

∥p(s, ·)∥2L2(S1) = ∥p(s0, ·)∥L2(S1) +

ˆ s

s0

d

τ
∥p(τ, ·)∥2L2(S1)dτ

= ∥p(s0, ·)∥L2(S1) + 2

ˆ s

s0

ˆ
S1

⟨p(τ, t), ∂τp(τ, t)⟩dt dτ

≤ R(1)2 + 2

∣∣∣∣ˆ s

s0

∥p(τ, ·)∥2L2(S1)dτ

∣∣∣∣1/2 ∥∂sp∥L2([s0,s]×S1).
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Since ∥∂sp∥L2([s0,s]×S1) ≤ ∥∂su∥L2([s0,s]×S1) ≤ a1 by Step 1, we see that

∥p(s, ·)∥2L2(S1) ≤ R(1)2 + 2a1

∣∣∣∣ˆ s

s0

a22(1 + ∥∂τu(τ, ·))∥2L2(S1)dτ

∣∣∣∣1/2
≤ R(1)2 + 2a1a2(2|s− s0|+ 2∥∂su∥2L2([s0,s]×S1))

1/2

≤ R(1)2 + 2a1a2(2 + 2a21)
1/2.

Step 6 Given u = (q, p) ∈ Mα,β and I ⊂ R a compact interval, we have by Step 5 that

∥p∥2L2(I×S1) =

ˆ
I
∥p(s, ·)∥2L2(S1)ds ≤ a24|I|.

Step 7 We now briefly indicate how to prove (10.17). Note that by (10.14) we have

|∇p|2 ≤ |∇u|2

= |∂su|2 + |∂tu|2

= |∂su|2 + |Jg(u)∂su+XHt(u)|2

≤ 3|∂su|2 + 2c20(1 + |p|2)2.

Thus we see that in order to deal with ∥∇p∥L2(I×S1), we need to be able to cope with the
L4-norm of p, ∥p∥L4(I×S1). This requires an interpolation estimate:

Lemma 10.26. There exists a C > 0 such that for every f ∈W 1,2(R × S1) one has

∥f∥4L4(R×S1) ≤ C∥f∥2L2(R×S1)∥f∥
2
W 1,2(R×S1).

A proof of the lemma can be found in [AS06, Lemma 1.11]. The rest of the proof can
be found in [AS06, p278-279].

We now use Theorem 10.25 to prove Theorem 10.24.

Proof of Theorem 10.24. Fix a smooth cutoff function β : Rto[0, 1] such that β(s) = 1 for
s ∈ [0, 1], and β(s) = 0 for s outside of [−1, 2], and such that ∥β′(s)∥ ≤ 2 for all s ∈ R.
Given k ∈ Z, let

vk : R × S1 → T ∗B, vk(s, t) := β(s− k)u(s, t).

Then with ∂̄ := ∂s + J0∂t as usual, we have

∂̄vk = β′(s)u+ βJ0XHt(u)

Fix r > 2 (for instance, r = 3 works). Since vk is compactly supported, we can use the
Calderon-Zygmund inequality (Exercise 4.7) to estimate

∥∇vk∥Lr(R×S1) ≤ c(r)∥∂̄vk∥Lr(R×S1)

≤ 4 · 31/rc(r)d+ 2∥p∥Lr([k−1,k+2]×S1) + c(r)∥XHt(u)∥Lr([k−1,k+2]×S1),

(10.22)

where d is the diameter of B inside RN , and c(r) is the constant provided by the Calderon-
Zygmund inequality. Let K(r) denote the norm of the continuous embedding

W 1,2([0, 3]× S1) ↪→ Lr([0, 3]× S1).
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Using Theorem 10.25, we see that

∥p∥Lr([k−1,k+2]×S1) ≤ Kr∥p∥W 1,2([k−1,k+2]×S1)

≤ Krc(3 + (1 +
√
3)2)1/2

≤ 4Krc.

(10.23)

Similarly using (10.14) and (10.23), we see that

∥XHt(u)∥Lr([k−1,k+2]×S1) ≤ c0(3
1/r + ∥p∥2L2r([k−1,k+2]×S1))

≤ c0(3
1/r +K2

2r∥p∥2W 1,2([k−1,k+2]×S1))

≤ c0(3
1/r + 16K2

2rc
2).

(10.24)

Combining (10.22), (10.23) and (10.24), we obtain a uniform bound on ∇vk in Lr(R×S1).
Thus u is uniformly bounded in W 1,r([k, k + 1]× S1), and since r > 2, also in L∞([k, k +
1]× S1). Finally, since k was arbitrary, we obtain a uniform bound for u in L∞(R × S1).
This completes the proof.

There is one more thing to say about compactness before we can move on to define the
Floer complex for cotangent bundles. Namely, when it comes to proving invariance, we
will need an analogous L∞-estimate for solutions of an appropriate s-dependent problem.
This is the content of the following result, which is taken from [AS06, Lemma 1.21].

Let ζ : R → [0, 1] denote a smooth function such that ζ(s) = 0 for s ≤ 0 and ζ(s) = 1
for s ≥ 1, with 0 ≤ ζ ′(s) ≤ 2 for all s ∈ R. Suppose H0 and H1 are two Hamiltonians
satisfying (Q1) and (Q2), and define

H : R × S1 × T ∗B → R, H(s, t, x) := ζ(s)H1(t, x) + (1− ζ(s))H0(t, x).

Given α ≤ β, let Nα,β denote the space of all smooth maps u ∈ C∞(R× S1, T ∗B) solving

∂su+ Jg(u)(∂tu−XHs,t(u)) = 0

and such that

AH0(u(s, ·)) ≤ β, ∀ sle0, AH1(u(s, ·)) ≥ α, ∀ s ≥ 1.

Theorem 10.27. There exists a constant δ(c1, c2, c3) > 0 such that if H0 and H1 are
two Hamiltonians of quadratic type that satisfy (Q1) and (Q2) with the same constants
c1, c2, c3 and in addition satisfy

|H0(t, q, p)−H1(t, q, p)| ≤ b+ δ|p|2, for all (t, q, p) ∈ S1 × T ∗B (10.25)

for some constants b ≥ 0 and some 0 < δ < δ(c1), then: given any α ≤ β, the space Nα,β

is bounded in L∞(R × S1).

Proof. We prove the result in three steps.
Step 1 We first show that for any u ∈ Nα,β, one has

AHs(u(s, ·)) ≤ β + 2b+ 2δ∥p∥2L2((0,1)×S1). (10.26)

and
E(u) = ∥∂su∥2L2(R×S1) ≤ β − α+ 2b+ 2δ∥p∥2L2((0,1)×S1). (10.27)
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Indeed, to prove (10.26), it is sufficient to prove the result for s ∈ [0, 1], since

AHs(u(s, ·)) = AH0(u(s, ·)) ≤ β, for all s ≤ 0,

AHs(u(s, ·)) = AH1(u(s, ·)) ≤ AH1(u(1, ·)), for all s ≥ 1.

For s ∈ [0, 1], we estimate

AHs(u(s, ·)) = AH0(u(0, ·)) +
ˆ s

0

d

dr
(AHr(u(r, ·))) dr

= β −
ˆ s

0

ˆ
S1

|∂su|2Jdtdr +
ˆ s

0
ζ ′(r)

ˆ
S1

(H0(t, u)−H1(t, u))dtdr

≤ β + 2(bs+ δ

ˆ s

0
∥p(r, ·))∥2L2(S1)dr

≤ β + 2b+ 2δ∥p∥2L2((0,1)×S1).

The proof of (10.27) is similar.
Step 2 We show that for all u ∈ Nα,β, one has

c1
2
∥p(s, ·)∥2L2(S1) − (c2 + β + 2b) ≤ 2δ∥p∥2L2((0,1)×S1) +

1

2c1
∥∂su(s, ·)∥2L2(S1)). (10.28)

To see this we first argue as in the proof of (10.20) to see that

λ(∂tu)−H(s, t, u) ≥ c1|p|2 − c2 − |p||∂su|,

and hence by (10.26) we see

β + 2b+ 2δ∥p∥2L2((0,1)×S1) ≥ AHs(u(s, ·))

≥ c1∥p(s, ·)∥2L2(S1) − c2 − ∥p(s, ·)∥L2(S1)∥∂su(s, ·)∥L2(S1)

≥ c1
2
∥p(s, ·)∥2L2(S1) − c2 −

1

2c1
∥∂su(s, ·)∥2L2(S1),

which implies (10.28).
Step 3 We now integrate (10.28) over (0, 1) and use (10.27) to see that

c1
2
∥p∥2L2((0,1)×S1) − (c2 + β + 2b) ≤ 2δ∥p∥2L2((0,1)×S1) +

1

2c1
∥∂su∥2L2((0,1)×S1)

≤ 2δ∥p∥2L2((0,1)×S1) +
1

2c1

(
β − α+ 2b+ 2δ∥p∥2L2((0,1)×S1)

)
.

In other words,(
c1
2

− 2δ

(
1 +

1

2c1

))
∥p∥2L2((0,1)×S1) ≤ c2 + β + 2b+

1

2c1
(β − α+ 2b).

This tells us that if

0 < δ < δ(c1, c2) :=
c1
4

(
1 +

1

2c1

)−1

then ∥p∥L2((0,1)×S1) is uniformly bounded for u = (q, p) ∈ Nα,β. Thus we can improve
(10.26) and (10.27) to the claim that there exist constants a′1, a′2 > 0 such that

∥∂su∥L2(R×S1) ≤ a′1,

∥p(s, ·)∥L2(S1) ≤ a′2(1 + ∥∂su(s, ·))∥L2(S1).
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These two equations were exactly the conclusions of Steps 1 and 2 of the proof of Theorem
10.25. The reader may now easily check that the rest of the proof of Theorem 10.25 goes
through without change. Moreover the proof of Theorem 10.24 goes through without any
changes. This completes the proof.

We can now define the Floer homology HF∗(H) and prove that it is independent of the
choice of Hamiltonian H satisfying (Q1) and (Q2). Since we know that solutions to the
Floer equation with bounded action remain in a compact subset of T ∗B, the transversality
and compactness analysis we performed earlier go through without any changes. Thus
from now on let us assume that H is a Hamiltonian satisfying (Q1) and (Q2), such that
additionally:

1. Every element of P1(H) is non-degenerate.

2. The linearization D∂Jg ,H(u) at every solution u of the Floer equation for (Jg,H)
admits a left inverse, and hence the moduli spaces M(x−, x+) for x± ∈ P1(H) are
all manifolds.

Definition 10.28. We define CF∗(H) to be the graded Z2-vector space generated by all
formal sums ∑

x∈X
⟨x⟩ ,

where X ⊂ P1(H) is a subset such that

sup
x∈X

AH(x) < +∞.

The grading is given by the Conley-Zehnder index. Note that such a set X is necessarily
finite, thanks to Lemma 10.14.

The boundary operator is defined in the standard way:

∂ ⟨x⟩ :=
∑

y∈P1(H)
CZ(y)=CZ(x)−1

n(x, y) ⟨y⟩ ,

n(x, y) := #2M(x, y).

The fact that ∂ ⟨x⟩ is a well defined element of CF∗(H) follows from the fact that
n(x, y) = 0 if AH(y) > AH(x), together with Lemma 10.14.

Now we explain how Theorem 10.27 can be used to show that the resulting homology
HF∗(H) is independent of the choice of Hamiltonian H satisfying (Q1) and (Q2). Indeed,
suppose H0 and H1 are two such Hamiltonians. We may assume that they both satisfy
(Q1) and (Q2) with the same constants c1, c2, c3. By (10.12), there exists a constant
c4 > 0 such that

|H0(t, q, p)| ≤ c4(1 + |p|2), |H1(t, q, p)| ≤ c4(1 + |p|2). (10.29)

Let σ ∈ [0, 1], and define Hσ := σH1+(1−σ)H0. Given σ0, σ1 ∈ [0, 1], we see from (10.29)
that

|Hσ1(t, q, p)−Hσ0(t, q, p)| ≤ 2c4|σ1 − σ0|(1 + |p|2).
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In particular, if |σ1 − σ0| < δ(c1)/2c4, where δ(c1) was specified in Theorem 10.27, then
we have L∞-estimates for the s-dependent problem interpolating between Hσ0 and Hσ1 .
Then the analogue of Theorem 9.3 tells us that there exists a well-defined chain map

Φσ0,σ1 : CF∗(Hσ1) → CF∗(Hσ1)

inducing an isomorphism ϕσ0,σ1 on homology, which moreover is suitably functorial (in
the sense specified by Theorem 9.3). We now choose a sequence

0 = σ0 < σ1 < · · · < σN = 1, (10.30)

such that 0 < σj − σj−1 < δ(c1)/2c4 for each j = 1, . . . , N , and such that each Hσj is
non-degenerate in the sense described above.

Exercise 10.29. Show that such a sequence (10.30) exists.

One finally defines the map

ϕ : HF∗(H0) → HF∗(H1), ϕ := ϕσN−1,σN ◦ c · · · ◦ ϕσ0,σ1 .

We emphasise that in general there is no chain map between CF∗(H0) and CF∗(H1). The
idea of breaking an homotopy down into many little pieces and then concatenating the
corresponding maps is called the adiabatic method.
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CHAPTER 11

Infinite dimensional Morse homology
At this point I ran out of time. . .

109



CHAPTER 12

The Abbondandolo-Schwarz isomorphism
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